wie ess

Magnette recorcing

S.a.w. guide

(EIT) mopak 200 s .14 per reel.

olbox Reels. ilticore 5 core (1) vbit

ilticore 5 -core solder for radio, TV.and similar work. acces copper erosion. Suitable for serviceengineers
d manufacturers using small quantities of solder

MULICORE
SUTD S B

 - 180

Hicore Wick. tually any joint.
min dia. Size AB10. 1.38 per reel.
\qquad

luminium Soldering.

Sof a luminiu. N . N solder for soldering most fi-Fi Accessories Ltd., (Solder Division yy House, WoodLane End
el Hempstead, Hertfordshire HP2 4RQ. el Hempstead, Herttc
hone: (0442) 61291.

Products that help you
make a better iob of it

All recommended retail prices shown are inclusive of VAT. If you have difficulty in obtaining any of All recommended retail pricesshow are
these products send direct with 40 p for postage and packing. For free colour brochure send S.A.E. ww-004 for further detalls

Front cover shows piezo-
electric Rochelle salt
crsstals photographe by by
Paul Brierrey in polarized
light
in our next issue
Transient intermodulation
distortion is reviewed in a distortion is reviewed in a
tutorial by Matti Otala that
gives a gives a comprehensive pic-
ture of distortions of this
kind. ture
kind. David Read's modification
to hiss active crossover net
works allows Quad electro
static loudspeakers to be
used with a women bass
unit.
Opto-electronic contant
breaker is a compact circuit
which directly drives an
electronic ignition init and
overcomes the heit wear
and timing scatter inherent
in mechanical contacts. 002 004$\begin{array}{r}006 \\ 007 \\ \hline 008\end{array}$ 008
009 011014
-014 015
016 018

Formore details circle the appropite numbers on the enquiry card
$93531 / 2$ digit hand hold DMM 001 936 31/2 digit hand hold DMM 936 3/2 digit hand hold DMM . $\quad 002$ 940 Hand hold therm capacitance meter -...... 0 130 Hand hold thermometer 1351 As above to 20A $17531 / 2$ digit portable DMM $175031 / 2$ digit bench DMM 248 41/2digit portable DMM $2584 / 2 / 2$ digit portable DMM $\quad 01$ 2480 41/2 digit bench DMM 3400 41/2 digit lab DMM - 012 $35005 \frac{1}{2}$ digit lab/systems DMM _ $\quad 013$ $750051 / 2$ digit systems DMM 3505 Single range DVMs 8100 Dual output de volts standard 016 5858 digit portable frequency meter 250 MHz 58008 digit bench frequency meter 520 MHz 57407 digit multifunction timer-counter 57407 digit multifunction timer-counter 019
Short form catalogue .

MUITIFUNCTION TIMER-COUHTEP

xternal clock inpu

UK price £195 delivered ex Vat

FARNELL INTERNATIONAL INSTRUMENTS LIMITED - WETHERBY • WEST YORKSHIRE LS22 4DH• TELEPHONE 093761961 • TELEX 557294 FARIST G REGIONAL OFFICE SOUTH: HARPENDEN TELEPHONE 0582769072

wireless world

ELECTRONICS/TELEVISION / RADIO/AUDIO

MARCH 1981 Vol 87 No 1542

37 The dream of objectivity

38 Surface acoustic wave devices by K. J. Murray and P. D. White 42 Modular frequency counters by M. Vozjnak
47 World of amateur radio
Mritain's computer networking. tre month
NPL forms speech recognition club

Electronic Brokers-Europe's Prem supzrlative CAL PRAIED 10 The
Electronic
Brokers
GUARANTE Unless otherwise stated, all test equipment sold by us carries a 12 month warranty; For VDUs and Teletypes we offer a 90 days warranty, and
computers are offered with on site acceptance and diagnostic tests (which may qualify them for independent ongoing maintenance) When you buy from Electronic Brokers you know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And it's serviced by our own highly qualified technicians.

> A copy of our Trading Conditions is available on request.
ier Text Equipment Company offer GBD EOU PM BT ORICNAL SPECS

... March 1981.....Latest Test Equipment......		
WUER SUPPLIES vance.		
5 V @ 20A switching 160.00 5 V @ 10 A switching $\mathbf{\Sigma 9 5 . 0 0}$	$\cos _{R 2}$	Hz-
RECORDERS		
Weter Packaras. paper 8950.00		
PM81 10 Single Channel Chart Recorder.10mV-10V 195.00		
Labs Channel U Recorder. Gid and		
601250 Channel UV Recorder. Servo paperdrive upto 5 metrs/sec. $12^{\prime \prime}$ paper . . . 1100.00		
Watenabe hannel Chart Recorder. ImV- 100 V .250 mm scan width $\mathbf{\Sigma 1 9 5 0 . 0 0}$		
Avo.HF1 135 AM Signal Generator. 100 KHz -lin TRANSMISSION MEASUPING EUIPMENT 1581 RF - ower30 mW -100W.		
HF136 AMMFM Signai Generator. 4.0 - 120 MHz -100mV in $20 a 8$ steps plus ine control. O/P		
(2)		
reequency accuracy $\pm 2 \%$ or $\pm 0.1 \mathrm{~Hz}$		

 specia ist in quality econa we
equp nent, omputers ard diss
per ipheras per pherals tstablished 14 ve wo have porfeered the s
concepi in B fitall, and
terit To surbort ou growth we
a skilled tea
sales . This includes train

 the Electionis Bie
just a telqipione

Electronic Brokers Limited 61/65 Kings Cross Road London WClX 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

Electronic Brokers-Europe's Prem supermative

ier Used Computer Company offer SBD Com:Uita NEW CoMilion

Amcron INDUSTRIAL MUSCLE

Model - M600
\star POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$.
\star OUTPUT POWER IN EXCESS OF 1.5 kW iNTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)

- D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVa
\star HARMONIC DISTORTION LESS THAN 0.05% DC-2OKHz ATEISION OSCILLATORS \star UNIPOLAR AND
PLUG-IN MODULES: CONSAANT, FUNCTION GENERATORS, AND MANY OTHERS.
OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
\star TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS
\star INTERLOCK CAPABILITY FOR WARRANTY
For full details on all Amcron Products write or phone Chris Flack
Kirkham Electronics
MILL HALL, MIL LANE PULHAM MARKET DISS, NORFOLK IP21 4XL

DON'T GAMBLE

WITH PERFORMANCE BUY
LEVELL TESTERS

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are
checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages P t 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to mitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{IC} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is

TRANSISTOR RANGES (PNP OR NPN)
Сво ${ }^{81} I_{\text {EBO }}: 10 n A, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{Af.s}$. . acc. $\pm 2 \% \mathrm{f}$.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$
$10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V} 5 \mathrm{~V} .60 \mathrm{~V}$. $80 \mathrm{~V}, 100$ 20 V and 150 V acc $3 \% 100 \mathrm{mV}$, $10 \mu A$ with fall at $100 \mu A<5 \%+250 \mathrm{mv}$.
$\mathrm{BV}_{\text {CBO }}: \quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at
currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} . .10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ $10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$
f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$,
$1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 1
$\mathrm{h}_{\text {FE }}$: $\quad 3$ inverse scales of 2000 to 100,40 to 30
Vfs .d. acc. +20 mV measured at conditio
$V_{C E(\text { sat })}$: 1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of
$1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.
DIODE \& ZENER DIODE RANGES
$\begin{array}{ll}I_{D R}: & \text { As } I_{E B O} \text { transistor ranges. } \\ V_{\mathbf{Z}}: & \text { Breakdown ranges as } B V_{C B O} \text { for transistors }\end{array}$
$V_{D F}: \quad 1 V$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at $I_{D F}$ of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$
哭 $£ 160$

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed
stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a internal battery.
RESISTANCE RANGES
$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV . $1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V . $100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V . $10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA . CURRENT RANGE
100pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.

Maximum safe continuous o

MEASUREMENT TIME

<3s for resistance on all ranges relative to CAL position. <10 s for resistance of $10 \mathrm{G} \Omega$ across 1μ F on 50 V to 500 V . Discharge time to 1% is 0.1 s per μ F on CAL position. RECORDER OUTPUT
V per decade $\pm 2 \%$ with zero output at scale centre. Maximer
筒

Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K.

[^0]

WIRELESS WORLD MARCH 1981

You could do witha Helper on your test bench．

Toroidal
 which hey are rapidly replacing. Induced hum is seduced by a factor of ten.
Supplied with nigid mounting kit with centre boll, steel and neoprene washers.

Electronic Brokers

$\square \quad \begin{aligned} & \text { 61-65 King's Cross Road } \\ & \text { London, WCC1 9 9 N } \\ & \text { Tel: 01-278 3461-Telex } 298694\end{aligned}$ WW - 011 FOR FUC F PRTHER DETAIIS

OTE UPONITE con:amon

Introducing the first $41 / 2$ digit handheld DMM in a market that's been the exclusive domain of $31 / 2$ digit models. Until now.
The new Keithley 135.
Combining outstanding specification with
impeccable performance. And confirming Keithiey's position as a major innovator in D.M.M. technology:
. 0.05% DCV accuracy
Five functions
Low battery indicator
Full overload protection: 1000 V max DCV 1000 V peak ACV 300 V max Ohms
10 amp range
ACV bandwidth to 20 kHz The price - only $£ 139$ + VAT Need a bench unit? Then take a look at the new Keithiey 176 . Five functions, $41 / 2$ digits, $\pm 0.05 \%$ DCV accuracy, and full function annunciators. Built up to a standard - not down to a price Yet at only $£ 179+$ VAT, the 176 gives quality $41 / 2$ digit performance at a cost some $31 / 2$ digit manufacturers would dearly love to match. To find out more, fill in the coupon. And see what keeps Keithley one step ahead.

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL.
1 Bouiton Road Reading Be
Telephone (0734) 861287
Telex 847047

HPMEE
 OSCILLOSCOPES

(0)

MR 412

HRM 512

Y: Bandwudath

M 1 M 812
 Somo

remmain momition

TCRODIGTRALITIIOXDTWATCRODIGI䢒 You thought we were conceited.

Carston Electrnnics

$$
\begin{aligned}
& \text { Oscilloscope } \\
& \text { TEKTONI }
\end{aligned}
$$

$$
\begin{aligned}
& 25 \text { MhziMk for } 3 \\
& \text { Phas M oter } \\
& \text { DRANETZ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Power Meters } \\
& \text { DYMAR }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Power Supplies } \\
& \text { BRANDENBURG }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FARNELLL } \\
& \text { FAOBO.30 A OC Stab. } \\
& \text { FIMF }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SORENEN } \\
& \text { DCCR 30.2.5. } 3 \text {.3ov 2.5A DC Stab. } \\
& \text { Pulse Genarators }
\end{aligned}
$$

 HEWLET PACKARD
214A LoVV 5 P? D Doule pulse ol

 Recorders and Signal
Conditioning Equipment COMPEX
AM200
Pstru \qquad
 SRO KHN DR
BRUNO WOELKE

WIRELESS WORLD MARCH 1981
Bigger stock investment greater equipment range means wider choice

ALL PRICES LISTED ARE EXCLUSIVE OF VAT (Standard Rate)

THE ONE-OFF SHOP

3M SCOTCHFLEX IT'S CLICKED Verospeed now offers a choice of four So ways A P.C.B. moungth (394 mm) com 10 to all PCB. requirements and both the right angle and straight pin versions are available with long or short ejector ears. A full complement of Ribbon Cable mounted Sockets, Polarising Key and Strain Relief Clips completes the range.
The DIN 41612 compatible range of Connectors has also been expanded to include the 64/64 Cable and Frame mounting Plugs and Socketsia "byponents and tooling are all available "by return from Verospeed.

EQUIPMENT WIRE

Mains Cables, Ribbon Cables, Uniradio Coax, Miniature and Standard Multicores. The prices 154 product lines devoted to

Equipment Wires and Cables manufactured to BS and DEF Standards. Equipment Wire BS and DEF Standards. Equipment Wire
section includes a $7 / 0.12 \mathrm{~mm}$. PVC covered wire for small P.C.B. applications and E.T.F.E Wire - a $120^{\circ} \mathrm{C}$ Tefzel insulated wire which offers a low cost alternative to P.T.F.E. All are manufactured by the world's biggest manufacturer of Cables - B.I.C.C. - and are available via Verospeed's famous "by return" service
Look for these - and lots more in THE ONE-OFF SHOP Send for your copy. Test our service by phoning 0703618525 before 3.00 p.m. - and you catalogue wim be in th post tonigh

Britain's fastest growing distributor of branded electronic components.
Verospeed, Stansted Road, Boyatt Wood, Eastleigh, Hants. SO5 4ZY: Telex 477144
ww - 056 FOR FURTHER DETALLS

Why the Sinclair ZX80 Built: £999,95 Kit: £79.95
 Including VAT, post and packing, free course in computing.
 \square

 is Britain's best-selling personal computer.This is the ZX80. A really powerful, full-facility
computer, matching or surpassing other computer, matching or surpassing other
personal computers at several times the price 'Personal Computer World' ' gave it 5 stars for 'excellent value'. Benchmark tes
say it's faster than all previous personal say it staterer
computers.
Crogrammed in BASIC-the world's most
Prater
popular language-the ZXOBO is suitable for popular language-the ZX80 is suitable for
beginners and experts alike. And response beginners and experts ailen. And respons over $20,000 \mathrm{ZX80}$ s have been sold so far! Powerful ROM and BASIC interpreter
The 4 K BASIC ROM offers

remarkable programming
advantages:
$*$
$*$ entry: the $Z \times 80$ eliminates
a great deal of tiresome a great deal of tireso
typing. Key words typing. Key words
(RUN. PRINT, LIST etc.). have their own
single-key entry. * Unique syntax check * Excellent string-hand ding capabilitytakes up to 26 string variables of any relational tests (e.g. comparison)

* Up to 6 single dimension arrays.
FOR/NEXTIoods nested up to 26
* Variable namess of any length
* BASIC language also handles full Boolean
* $\begin{aligned} & \text { arithmetic, condition expressions, etc. } \\ & \text { Randomise function, useful for games }\end{aligned}$
* Randomise function, useful for games
and secret codes, as well as more serious and secret cod
applications.
* Timer under program control.
entry of machine
* High-resolution graphics
* Lines of unlimited length.

Unique RAM
The EX80's 1 K -BYTE RAM is the equivalent of up to 4K BYTES in a 100 lines of BASIC.
No other personal computer offers this nique combination of high capability and low price.

The ZX80 as a family learning aidd Children of to
years and upwards are quick to understand the The 2×80 as a tamily learning aid. Children of
years and upwards are quick toonderstand th
princinles of computing -and enioy their
persin principles of compur
personal computer.

The Sinclair tea BASIC manual

If the specifications of the Sincla Th80 mean little to you-don't worry. 128-page book (free with every $\mathbf{Z X 8 0}$). Th book makes learning easy exciting and enjoyable, and represents a complete
course in BASIC programming-from first course in BASIC programming-fr
principles to complex programs.
Kit or built -it's up to you
Kit or built -it's up to you
In kit torm, the $Z \times 80$ is pleasantly easy to assemble, using a aine-tipped soldering iron. And you may already have a suitable ma
adaptor-600 mA at 9VDC nominal adaptor- 600 mA at 9 VDC nominal
unregulated. If not, see the coupon. unregulated. If not, see the coupon.
Both kit and built versions come complete with all necessary leads to connect to your
TV (colour or black and white) and cassette TV (colour or black and white) and cassette
recorder. Plug in and you're ready to go. (Built versions come with mains adaptor.)

Now available for the $\mathbf{Z X 8 0}$... New 16K-BYTE RAM pack

Massive add-on memory. Only $£ 49.95$ The new 16 K -BYTE RAM pack is a complete
module designed to provide you-and your module designed to provide you-and your
Sinclair XBO -with massive add-on memory You can use it for those really long and database. (Yet it can cost as little as half th price of competitive add-on memory for
For example, you could write an interactive or ' conversational' program to show people what your ZX80 can do. With
$16 K$-BYTES of RAM, they could be talking your computer for hours! Ory yu can store a mass of data-perhaps in a fairly simple program-such as a name and address list, or a telephone directory
And by linking a number of separate programs together into one giant, but modular, program, you can achieve the same
effect as loading effect as loading several programs at once.
We're also confident that it won't be long
before you can buy cassette-based software
using the full 16 K -BYTE RAM. So keep an eye on the personal computer magazines-and brush up your chess perhaps! The RAM pack simply plugs into the
existing expansion port on the rear of the Zx80. No wires, no soldering. It rear a matter of
Zxit seconds and you don'tneed another power supply. You can only add one RAM pack to
your ZX80-but with 16 K -BTTES who could want more!
How to order
Demand for the ZX80 exceeds all other personal computers put together! So suse the coupon to order today for the earlies despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your $Z \times 80$ will be delivered
If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of coursene you
may return your ZX80 as received within 14 days for a full refund. We want you to be 14 days for a full
satisfiend. beyond all doubt-and we have no
doubt that you will be.

To: Science of Cambridge, FREEPOST 7, Cambridge CB2 1 YY
To:Science of Cambridge,
Remember all prices shown include VAT, postage and packing. No hidden extras. Please send me:

aty	Item	Code	Item price	$\underset{\Sigma}{\text { Total }}$
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	02	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX 80 BASIC manual and mains adaptor.	01	99.95	
	Mains Adaptor(s).(600 mA at 9V DC nominal unregulated).	03	8.95	
	16 K -BYTE RAM pack(s).	18	49.95	
	Sinclair ZX80 Manual(s). (Manual free with every ZX80 kit or ready-made computer).	06	5.00	
NB. Your Sinclair $Z \times 80$ may quality as a business expense.		TOTAL: \&		
Iencl Pleas Name	I enclose a cheque/postal order payable to Science of Cambridge Ltd for $£$			
Address				
FREEPOST-nostamp needed.				WRW03

WW - 083 FOR FURTHER DETAILS
There are 9 new features on this THRUULNE RF Wattmeter. And one farniliar one: the Elements
Forward Power in watts - with 120\% overrange and with the decimal point in place The same for Reflected Power
Push for Peak Envelope Power directions in watts
Push to read CW power in dBm
AND NOW: Rackmounted models for 2-way mobile, FM and TV broadcasters, portables with built-in or remote line
sections,compatibility with UEEE 488 and sections, compatibility with UEEE 488 and
RS-232 (options). Write for Series 4380
RS-L3L (options). WF Power ANAIYSTm

ASPEN ELECTRONICS LIMITED

Portable or AC Line operation with battery
charger (included)
 7 7745950 already own with your ush here to read SWR instantaneously and . .and\% Modulation . and Return Loss in dB d while tuning or tweaking, the memory buttons recall min and max values of any shows if it is rising or falling

GTYOU

 en K:1मान7130The pocket Digital Multimeter by which others are judged.

And generous discounts start at 10 units; 5\%

Everything about the 130 is right. Easy to operate, large clear read-out. Compact, robust and reliable. With a specification few can equal in machines costing twice the price
Only one calibration adjustment. One year guarantee on spec:25 ranges and five functions: ohms, DC and AC volts and amps.

10 amp range.
$100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.1 \Omega$ sensitivity.
20,000 hour M.T.B.F.
All this is backed by the immense knowhow of a specialist company with an enviable reputation for test equipment enviabie reputation ior test equip from $31 / 2$ to $51 / 2$ digits.

How do you get one?
Simple. Just send off the coupon enclosing cheque or postal order. And

FAST ERECTING GHARK

For World-wide Telecommunications in the 1980s

Clark Masts Ltd. are specialists in the design and manufacture of telescopic and sectional mast systems. With over 25 years' experience in supplying masts to meet exacting military and civil specifications we have the expertise you can depend on.
Extended heights $4 \mathrm{~m}-30$ metres capable of lifti headload $1 \mathrm{~kg}-200 \mathrm{Kgs}$., sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today.

CLARK MASTS LTD.
Binstead
Isle of Wight
PO33 3PA, England

Telephone: Ryde (0983) 63691
Telex: 86686

Quartz Oscillators

DIL compatible configurations

CMOS and TTL outputs
Frequencies one pulse per day to 60 MH
Many standard frequencies from stock
\qquad

$$
707
$$

ww - 016 FOR FURTHER DETAAİŚS

Make it for α Song!

The New Maplin in Matinée Amazing Value For Only f299.95
 $+£ 99.50$ for cabinet if required.

Easy to build. Latest technology - means less cost, less components and 80% less
wiring. Comparable with organs selling for up wiring.
to $£ 1,000.00$. Two 49 -note manuals. 13 -note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb.
Manual and Auto-Wah. Glide (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8 -instrument voicing. Major, Minor and Seventh chord Unique walking bass lines with each rhythm Unique countermelody line with each rhythm. Truly amazing value for money. Full construction details start in the March issue of Electronics \& Music Maker on sale Feb. 14th

The complete buyers' guide to electronic components. Wuyers guride to electr
comprehensi guiver 30 pages. it
come comprehensive guide to electronic
componts with thousands of
photographs photographs and illustrations and page
after page of invaluable data Get after page of invaluable data. Get a copp
now- it's she one e atalogue you can't
afford to be witho now - it's the one cal
afford to be without.

กา1กำ니ก

 Both shops closed Mondays.

Avo Limited,
Archcliffe Road,
Dover, Kent CT17 9EN.
WW - 077 FOR FURTHER DETAL
WW - 038 FOR FURTHER DETAILS

VERY SPECIAL OFFER OF FULLY
 GUARANTEED BRAND NEW SINGLE SIDE
 EUROPEAN MINIDISK DRIVES EXCLUSIVELY TO

WIRELESS WORLD READERS

Now really is the time to buy
New $51 / 4^{\prime \prime}$ drives will probably never again be so cheap.
Ring the enquiry number for further details This offer is exclusive to WW Readers and represents a saving of about $£ 75$ each on the normal RRP.

SPECIAL C.W.O. PRICE: £120

+ £2 CARRIAGE
+ 15% VAT Total CWO Price:
£140.30 per Drive Cheques and postal orders made payable to: WW DISK OFFER
49 Milford Hill, Batford Harpenden, Herts.
Tel: 0582429122

WW - 029 FOR FURTHER DETAILS

HIGH EFFICIENCY - HIGH QUALITY SINE WAVE INVERTERS

-FROM CARACAL

CARACAL sine wave inverters are modern replacements for older tuned-type (ferroresonant) inverters. They are widely used where a reliable source of standby or continuous $A C$
power is essential or for mobile or marine use where only a power is essential, or for
D.C. source is available.

- Very stable output voltage ($\pm 2 \%$) and frequency, $(\pm \mathbf{0 . 3} \mathrm{Hz}$) under all load/battery conditions
- Low distortion sine wave - only 3\% T.H.D.
- Very low input current on no-load
- Competitively priced, state-of-the-art technology

CARACAL POWER
PRODUCTS LTD.
42-44 SHORTMEAD 42-44 SHORTMEAD ST
BIGGLESWADE, BEDS TEL: 0767-81361

ㄷAMCAL
LEADERS INLOW-POWER
INVERTER TECHNOLOGY

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other. Ranges and
special scales can be inade to order.

Full Information from
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD. W.C. 1 Phone: 01/837/7937 Ww - 047 FOR FURTHER DETAIIS

TYPE 217 DUAL POWER SUPPLY f84.88 \& e3.00 carriage, ins. atc. constant voltage or constant current
digital monitoring
mode inolcation
+0 to 20 V and -0 to 20 V or 0 to 40 V
+0 to 750 mA and -0 to 750 mA
all inoependentiy selectable
LAB SPEC. - BENCH PRICE:

ONLY 4p EACH

ORION SCIENTIFIC PRODUCTS LTD.
10 Wardour St., London W1

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME Full range available to replace 1.5 volt dry cells and 9 volt
PP type batteries, SAE for lists and prices. $£ 1.45$ for booklet, "Nickel ICadium Power,'" plus catalogue.
\&New sealed lead range now available \star Write or call at:
SANDWELL PLANT LTD
2A Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764

It's easy
 to complain about advertisements.

 A.S. Lta, Brook Holise, Tornngton Place, London WCIE 7HN.ww - 014 FOR FURTHER DETAILS

Make a in your Diary...

for a new electronics hobby magazine with the emphasis on music projects.
It's all in
Electronics \& Music Maker: Feb 14th.
In issue 1 the first part of an article showing you how you can easily build a superb two manual organ with pedalboard for just $£ 299.95$ (plus $£ 99.50$ for cabinet if required)
It's all in
Electronics \& Music Maker : Feb 14th.
Lots of exciting projects to build in issue 1 : a car stereo booster, a hi-fi sub-bass woofer, part 1 of an advanced specification synthesiser at a very reasonable price, and more.
It's all in
Electronics \& Music Maker: Feb 14th
Lots of special features in issue 1 : the BBC Radiophonic workshop, an in-depth look at microphones, ant portronics, and much,

It's all in
Electronics \& Music Maker: Feb 14th.

The No. 1 monthly for the electronics and music enthusiast.

- ELECTRONICS A MUSIC MAKER
 ©(ECTRROR||(CF

Ask your newsagent to save you a copy now! Don't miss it.

ETECTROO円\| C

ON SALE AT ALL GOOD NEWSAGENTS
PRICE 65p

sales
METERS
HEELETT-PACKARD 3400 A RMS Voltmeter 10 Hz -10MHz
DYMAR 711 Millivoltmeter

 НЕWІЕТТ-РАСКА SIEMENS oscluloscopes

PROBES
TEKTRNXXP. $105 \times 10 \mathrm{DC}$ - 100 MHz
TEKTRONIX P. 6056 X
 TEKTRONIX P. 6330 Temerature Probe $-85^{\circ} \circ \mathrm{C}$ to $+150^{\circ} \mathrm{C}$器
 AR

 SIGNAL SOURCES

PM GOMPONENTS LTD. VALVE \& COMPONENTS SPEGIALISTS

ANALYSTERS

: | BRIDGES |
| :--- |
| GEN-RAD |

DIGITAL MULTIMETERS
KEITHLEY $13033 / 2$ Digit D
DIGITAL MULTMMETERS
KEITHLE Y Y 3 O $3 / / 2$ Digit D.M.M., NEW
Case for above
Case for above
FLUKE $8100 \mathrm{~A} 3 / 2 \mathrm{Digit}$ DC $/$ AAC Voits and Resistance $\varepsilon 70.00$
$\varepsilon 9.7 .0$.
$\varepsilon 95.00$

1 Tel Reading (OT34) 868109
WW-O57 FOR FURTHER DETALS
wW-039 FOR FURTHER DETAILS

Autostore.

Low-cost voice-logging for

 people with more important things to do.The problem: logging telephone and radio messages
without spending a fortune on equipment or hiring an expensive technician to operate it.
The solution: the new Racal Recorders Autostore. SIMPLICITY
With its automatic cassette-loading and fully automatic changeover from one deck to another, Autostore can - quite literally -

And it provides over 24 hours of unattended continuous recording on eight channels.
VERSATHITTY
Able to log radio and telephone messages simultaneously, Autostore can form part of a new system -or fit just as easily into an existing one. And its uses vary from ambulance, fire, police and security applications to the recording of financial transactions, conferences,
communications and taxi services.
Racal Recorders
Racal Recorders Limited, Hardley Industrial Estate,
Hythe, Southampton, Hampshire SO4 6ZH, England. Hythe, Southampton, Hampshire SO4 6ZH, England

BLCAL

RELIABILITY Available in 4 or 8 channel versions, and with integral micro-processor controlled automatic Timesearch capability to enable rapid message retrieval, Autostore is engineered to the very highest
standards by the company which pioneered air traffic control recording techniques. FULLDETAILS For full details of Autostore send off the coupon today.
 accurately and reliably. Please: \square send me full details of Autostore \square arrange for a demonstration at my own premises

Name Position.
Company

Racal Recorders Linited Hardioe Racal Recorders Limited, Hardley Industrial Estate,
Hythe, Southampton, Hampshire SO46ZH, England.

The AIRAMCO Mikro 1000

 -The Scottish Solution.

The Mikro 1000 is a Scottish built micro-computer which combine State of Art technology with simplicity and durability to give a powerful small business system at a very competitive price.
Driven by a 2.5 MHz or 4 MHz Z80 processing unit constructed
around Industry Standard S100 Bus, the Mikro 1000 is designe around Industry Standard S100 Bus, the Mikro 1000 is designed to provide the ease of expansion necessary in a modern growing business or industry - memory is expandable
from 32 K to 256 K , with up to 4 Megabytes of on-line disk storage.
The integral VDU has an 80 cols. $\times 24$ lines screen, and incorporates a green phosphor CRT, while the 117 key
keyboard can be used remotely from the main body of the machine, and may be programmed for user functions such as word processing commands.
As well as supporting all CP/M based languages, the Mikro 1000 has a full range of business software, including Sales, Purchase and Nominal Ledger, Inventory Control, and Payroll, as well as Word Processing (which is available at even lower cost as a separate system on the Mikro 1000 WP).

For further information on either Mikro 1000 system, please contact:
airamb
Unit A2, Longford Avenue, Kilwinning Ind. Est., Kilwinning, Ayrshire, KA22 8NP.
Tel: 029457755 Telex: 779808
WW - 089 FOR FURTHER DETAILS

SEQUENTIAL TONE GENERATOR -A PARAGGON WITH MANY
VIRTUES

VIRTUES

This single instrument provides all the signals necessary for testing Pocket Pagers, Selective calling systems, C.T.C.S., Tone Burst Systems as well as R.C.C. systems using PTMF, MTS,
IMTS, Interrut and F S K IMTS, Interrupt and F.S.K.
The memory also has additional capacity for tomorrows communications needs.
For further information contact Mike Taylor

FieldTech
PARAGON ELECTRONICS FieldTech Ltd.
Heathrow Airport Heathrow Airport
London
Hounsow TW6 3 3AF Hounslow TW6
Tel: 01759281
Texiex 23734
FLDTEC

ww - 017 FOR FURTHER DETAILS
ww - 063 FOR FURTHER DETAILS

50+ CASES FOR SPECIALISTS referred by JENSEN

JTK 16
JTK 16
Designed for Designed tor the professional delectro
technician reauirina a complete se
tools ing
50 professional tools. VOM Test meter

Also available with metictoonals | (JTK 16 mm$)$. |
| :---: |

See these caseses together with more than
20 other complete specilisist tool k its and

JTK 17
Availibin 12 different case
moditications.

Special Products Distributors Limited
Tel. 01-629 9556 Cables: Speciprod, London, W. 1 ww - 015 FOR FURTHER DETALLS

PA;CE AP360 POWER AMPLFIER

AP360 Stereo Power Amplifiers have been well-tried and proven in the music industry. They prove tha sonic quality, ruggedness and reliability can b combined in one amp.

Independent power supplies elminate crosstalk and Independent power supplies elminate crate sound reproduction.
Power Output. 180 Watts RMS per stereo channel, into 4 Ohms.

AP360 (jacks)
AP360 (XLR)
$£ 170.00$
$£ 180.00$
(Incl. Carriage U.K. Mainland. Excl. V.A.T.) Manufactured in England by:

PACE INDUSTRIAL
EQUIPMENT LTD.
Queen's Road, Royston SG8 5AQ
Tel. (0763) 45321. Telex 817929

This unit provides simple, reliable programming of up to \&
EPROMS simultaneously. It has been designed for ease of operator se - a single 'program' key starts the self check - blank check Independent blank check \& verify controls are provided along with
Iode pass/fail indicators for each copy socket and a sounder to mode, pass/ fail indicators for each copy socket and a sounder to signal a correct key command \& the end of a programming run.
Any of the $2704 / 2708 / 2716(3$ rail) \& $258 / 2788 / 2516$;
$2716 / 2532 / 2732$ (single rail) EPROMS may be selected without hardware or personality card changes.
PRICE $£ 545+$ VAT. Postage paid

BULK EPROM

 ERASING

[^1]IMMEDIATE DELIVERY ON ALL SERVICE EQUIPMENT

UNBEATABLE PM5519FROM PHILIPS,OF COURSE

PM 5519 I CTV pattern generator * Over 20 colour and b/w test patterns carefully selected for maximum versatility

* RF signals available in bands, 1 III, IV and V
* Variable video output (with I volt fixed position) * External video and sound modulation facility
* Composite sync output for triggering - includes the line frame and blanking pulses to the local TV standard
* Versions available for non.

British TV systems
Reader inquiry number 220

Test \& Measuring Instruments

SIGNALSUCCESS

PM 5326 RF signal generator * $100 \mathrm{kHz}-125 \mathrm{MHz}$ in nine overlapping ranges with 5 digit display

* Built-in 5 digit counter displays * Built-in 5 digit counter displays external frequencies. Two versions available: 100 MHz Two versions available: 100 MHz
(I kHz resolution) - PM 5326 X or
$\mathrm{MHz}(10 \mathrm{~Hz}$ resolution) - PM 5326 * 50 mV RF output at 75Ω can be attenuated to over 100 dB * Electronically. stabilized output level * Wobbulator facility for IF amplifi
AM/FM radio and TV receivers Reader inquiry number 221

LOW-COST, HIGH-VALUE OSCILLOSCOPE
PM 3207 dual trace oscilloscope

* Ideal for service and general-purpose
applications
$* 15 \mathrm{MHz} / 5 \mathrm{mV}$
* Triggering from either channel or
external input
* Auto TV tr
* Auto TV triggering
$*$ Same sensitivity on X and Y channels
$\quad *$ Full $8 \times 10 \mathrm{~cm}$
screen
Reader inquir
number 222

PM 2505 electronic analogue multimeter

* 62 measuring ranges
* High V and A sensitivity
* Continuity check by sound signal
* Linear resistance ranges to $30 \mathrm{M} \Omega$
* Automatic polarity indication * Unique movement for high ac Reader inquiry number 223

PM 2502 passive analogue
multimeter

* Accuracy at a low price
* Comprehensive measuring ranges
* Commorn linear scale for AC and DC
* Continuity check by sound signal
* 250 V overload protection on all
ranges
...ANDTHREE COUNTERS
PM 666180 MHz automatic frequency counter
frequency counter
* One control - ON/OFF
* Automatic triggering, noise * Automatic triggering, noise * High 20 mV RMS sensitivity
$* 8$-digit LED display
Reader inquiry

SOME OTHER STARS
FROM THERANGE
PM 5501 colour bar pattern generator

* Ideal for mobile maintenance * 5 test patterns for colour and b / w Band III, and UHF Band IV * I kHz'tone for sound checks Reader inquiry number 226 PM 5107 low distortion LF generator
* Frequency range $10 \mathrm{~Hz}-100 \mathrm{kHz}$
* Distortion 0.02% Distortion 0.02\% * Sine and square wave signals Reader inquiry number 227 PM 6307 wow and flutter meter * High accuracy and frequency stability * 3150 Hz or 3000 Hz switchable * Separate 'drift' and 'flutter' indication RM 646 ster PM 6456 stereo generator * Complete stereo signal with low * Separate L and R signals * External modulation facility * X-tal controlled pilot * Adjustable multiplex signal and tunable Reader inquiry number 229 Reader inquiry number 229
WHERE TO BUY YOUR PHILIPS AUDIO
AND VIDEO SERVICE EOUIPMENT The entire range is avaliabie rom the phips

\qquad
PM 5519 CTV pattern generator 220
PM 5326 RF signal generator PM 5326 RF signal generator220
221
222
5223 PM 2517, 2505,2502 multimeters 223 ounter MHz frequency PM 6667/6668 high resolution PM 550 colour bar pattern generator generator
PM 5107 LF generator 225
CHOOSE FROM THREE MEEERS

PM 2517 digital multimeter

* Choice of LED or LCD display
* True RMS AC readings (AC coupled)
* Aútoranging with mahual override
* Current up to. 10 A

Reader inquiry number 223

PM 6667 and PM 6668 high resolution counters
(PM 6667) (PM 6668) or 120 MHz

* Reciprocal technique giving fast high
* Auto triggering on all waveforms and
* 15 mV RMS sensitivity
* High stability X-tal oscillators:
* High stability X-tal oscillators
* Microprocèssor control

Reader inquiry number 225

Pye Unicam Ltd
Philips Electronic Instruments Dept
PHILIPS
 fact:
the SM63 looks
(and sounds) great
in front of people...
 fact:
the SM63 looks
(and sounds) great
in front of people...
 fact:
the SM63 looks
(and sounds) great
in front of people...
 fact:
the SM63 looks
(and sounds) great
in front of people...

and cameras!

and cameras!

Editor:
Editor:
Deputy Editor: PHILP DARRINGTON
$01-6613500 \times 3586$

Technical Editor: GEOFF SHORTER, B.SC
$01-6613500 \times 3590$

Projocts Editor:
MIKE SAGIN
$01-6613500 \times 3588$
Nows Editor:
MARTIN ECCLES
$01-6613500 \times 3589$
Drawing Office Manage

Technical Illustrat
BETTY PALMER
Production \& Design:
ALAN KERR
Advertisement Manager:
BOB NIBBS, A.
$01-6613130$
DAVID DISLEY
$01-6613500 \times 3593$
barbara miller
$01-6613500 \times 3592$
Classified Managor:
BRIAN DURR
01.6613106
JOHN GIBBON (Make-up and copy) 01-661 3500×3561

Publishing Diractor:
GORDON HENDERSO

wireless
 world

The dream of objectivity

All good scientists and engineers are dedicated to the principle of objectivity. This presumes, however, the existence of something that can never be - a human observer who is both detached from the world he observes and also free of all value desires, unconscious motivation and psychological conditioning. Because some of the productions of the human mind, such as logic, are value free, we tend to this property too. Experience should remind us, however, that such purity is attained only occasionally and fleetingly, perhaps after much painful effort. The principle of objectivity is, as the French
scientist Jacques Monod reminds us, an act scientist Jacques Monod reminds us, an act
of faith, a moral rule. In his book Chance and Necessity he says: "True knowledge is ignorant of values, but it has to be grounded on a value judgement, or rather an axiomatic value. It is obvious
that the positing of the principle of objectivity as the condition of true knowledge constitutes an ethical choice and not a audgement reached from knowledge, since, according to the postulate's own terms, there cannot be arbitral choice."
Our human limitations in reaching towards the ideal of objectivity have been demonstrated in this journal in the
various articles and letters discussing the various artucles and letters discussing the
nature of a propagating signal. Must an electromagnetic signal be understood in terms of Maxwell's equations or can it be accepted as a primitive, a thing in itself that requires no further analysis, as suggested by Catt, Davidson and easy enough to propose mental models, but far from easy to validate these models with the uncertain and fragmentary information we get by
observing the real world. The first question, though, is what exactly do we observe? Initially it seems to us that we mentally observe our own experiences.

These experiences are happenings inside the body including those in the sense organs resulting from stimuli from the outside world. We have to admit, though, that these experiences are not
really observed by some detached agent, some extra little creature inside us, because there is no such mythical observer apart from the process of observing. It is only possible to say with certainty that observing is taking place, The preceding discussion of what "we"
do as active agents is no more than a convenient form of words, fostering an illusion.
This illusion of the separate, autonomous " I " or "we" doing things to the world (here, observing it) arises from the historical mind-body duality which may have originated from the religious concept of an immortal soul. It was formalized by Descartes in his
Meditations and is now supported by some modern psychology in the assumption of an ego or self. Much of Gilbert Ryle's book The Concept of Mind is devoted to attacking this "Cartesian, Ryle calls it a category-mistake, like the mistake of thinking a university to be some entity that is distinct from all the buildings and activities which make it up. Just as the university would be nonexistent without the buildings and existent without the brain and sense organs continually receiving stimuli from the outside world. The observer would not exist if it were not for the
phenomena of the world: equally the phenomena of the world would not exist if it were not for the observer (e.g. there is no sound without someone to hear it). So they both cannot exist independently at the same time. World and observer, object and subject, are indissolubly
linked by phenomena. The observer cannot be truly detached and objectivity remains a dream

Surface acoustic wave devices

A practical guide to their use for engineers
by R. J. Murray and P. D. White Philips Research Laboratories

This article, intended specifically for professonal applications engineers, covers three common types of surfac acoustic wave devices: bandpass main part of the article summarizes their performance limits, specification and application. Subsidiary sections give the basic principles of s.a.w. levices and (next month) fuller operation and performance trade-offs of the three types of component.
Among the many signal processing techniques available to today's engineer it is eas to lose sight of one of the more versatile and yet lesser known technologies - that of surface acoustic waves. are now being incorporated into adyanced electronic systems in both the professional and consumer markets and can, in many cases, implement signal processing functions that are not easily achievable with
alternative technologies. The following alternative technologies. The following
sections describe three types of device from the wide range of available s.a.w. components: bandpass filters, delay lines and oscillators

Bandpass filters

 The range of s.a.w. components includesboth transversal filters, which are broadband, and resonant filters, which are narrowband. In a transversal filter, filtering is achieved by passing the signal through a number of delay paths and adding these
delayed signals. In the passband the various signals add constructively while in the stopband they add destructively. Thus, s.a.w. transversal filters use travel ling waves while, in contrast, s.a.w. reso
nators employ standing waves and hav properties similar to LC and quartz crysta filter bandwidths is shown in Fig ,
The best known examole of this to

The best known example of this type s.a.w. device is undoubtedly the television i.f. filter. Work on the s.a.w. tv filter began more than ten years ago and has reare now in large-scale production in Eng are now in large-scale production in Eng
land, France, West Germany, Japan and the USA.
This surface wave filter replaces an LC filter which uses five adjustable inductors and one adjustable resistor (all of which
need setting at the factory) as well as sev eral other components, all assembled on a printed circuit board and occupying a volume of $50 \mathrm{~cm}^{3}$. The surface acoustic wave replacement needs no alighinment and is mounted in a TO- 8 package occupy
ing a volume of less than $2 \mathrm{~cm}^{3}$. The two types of filter are shown in Fig. 2. Unlike LC filters, s.a.w.. transversal filters are not usually constrained to be minimum phase filters. This means that,
to a large degree, the amplitude and phase to a large degree, the amplitude and phase
responses may be designed and specified independently of one another. If required a linear phase response may be achieved while simultaneously achieving a steep sided, flat topped, or equi-ripple amplitude response.
S.a.w. filters have many potential appli-
cations in con cations in communications and radar
systems which can take advantage of thei systems which can take advantage of their
small size and weight. Table 1 lists the performance which might currently be achieved by filters of this type.
The ranges quoted in Table 1 are not intended to suggest that all of thes
extremes may example, it would not be reasonable to expect a filter with a very nasrow band
Table 1: Surface wave broadband transversal filter capabilities

Centre frequency range	$10 \mathrm{MHz}-1.5 \mathrm{GHz}$ Bandwidth $(-3 \mathrm{~dB})$
	Minimum: 100 kHz or 0.2% of centre frequency (whichever greater)
	Maximum: 100%
Transition bandwidth	Minimum: 100 kHz or 0.2% of centre frequency
(-50dB to -3dB)	(whichever greater)
Group delay	Typically $1-5 \mu \mathrm{~s}$
Group delay ripple	Typically $<2 \%$ pk-pk
Insertion loss	Typically $15-25 \mathrm{~dB}$
Passband amplitude ripple	Typically $<0.5 \mathrm{~dB}$ pk-pk
Stopband	Typically 50 dB close to passband
Package size	Small - usually TOrther out from passband
Sack 1.5 cm diameter)	

Fig. 1. Range of frequency and bandwidth achieva
filters.
width at 10 MHz to fit into a TO-8 pack age. Moreover, the values shown are typical and not necessarily firm limitations. Wide bandwidths ($>50 \%$) can
only be achieved with high insertion loss.

Frequency range and bandwidth. There are two main restrictions here: physica size and fabrication considerations. The maximum acceptable substrate size deter-
mines the obtainable steepness of the filter skirts, while the available pattern definition determines the upper frequency limit.

- Low frequency/bandwidth limitation. The device length is determined by the cut off (expressed in $\mathrm{db} / \mathrm{Hz}$) of the filter amplitude response, and is independent of centre frequency. Shape factors (i.e. bandwidth at -50 dB divided by the bandwidth at -3 dB) of better than 2:1
can be achieved. - High frequen device fabrication, current photo-lithographic techniquès set an upper frequency limit for filters of approximately 500 MHz (although some higher frequency devices
have been made to suitably relaxed specifications). However, with the increasing use of electron beam lithography this limit

WIRELESS WORLD MARCH 1981
expected to rise in the near future to .5 GHz .

Group delay and insertion loss. There is an absolute delay through the filter which is usually in the range of $1-5 \mu \mathrm{~s}$, although it may be more for filters with very steep
kirts. In a subsidiary section it is shown kirts. In a subsidiary section inere is a trade-off of insertion loss against amplitude ripple and group delay ipple.
A loss of 20 dB is typical for most s.a.w. filter applications. This might give an amgroup delay ripple of less than 2%.

Transversal filter example. Fig. 3 shows the amplitude response of a trasversal filter that has been developed as an i.f. filter Fig. 4 shows the response of the same filte easured over a wider band Centre frequency $\begin{array}{ll}\text { Centre frequency } & 124 \mathrm{MHz} \\ \text { Bandwidth }(-3 \mathrm{~dB}) & 3.7 \mathrm{MHz}\end{array}$ Amplitude ripple $\quad< \pm 0.5 \mathrm{~dB}$ Group delay ripple $< \pm 40$ ns Insertion loss
topband (ultimate) -51dB Package $\begin{aligned} & \text { TO }-8\end{aligned}$

Bandwidths less than 1% (resonant filt ers). This type of s.a.w. filter has a band width range of 0.01% to 1% of centre able for communications channels of bandwidth 12.5 kHz or greater.
Because these are resonant devices they have a more restricted range of parameter
values than do transversal filters. They are values than do transversal filters. They are
usually specified in the same way as lowfrequency LC filters with requirements of requency, loss, bandwidth, response type e.g. Butterworth) and order of filter. Table 2 summarises achievable resonato filter characteristics.
not intended to suggest that all extremes of range can be met simultaneously. For example a very narrow andwidth filter (say 0.02% of centre freeency) at 500 MHz with a third orde loss.

Frequency range. The lower frequency imit is determined by the maximum subs rate size. The upper frequency limit is set, as with transversal filters, by lithographic demanding specifications and up to 1.5 GHz for relaxed specifications.

Bandwidth. Within the range quoted (in able 2) the filter loss decreases signif Whereas a filter with a bandwidth of 0.01% of centre frequency may have 6 dB of loss, if the bandwidth is increased to 0.03% then the loss may be reduced to mainly due to external components and stray capacitance (approximately 1dB). Bandwidths of up to 0.05% can b achieved using a quartz substrate withou
any external temperature compensation but for broader bandwidth filters it is necessary to use a different material which means that is (cont mperature) is usually required.

Response type and order of filter. Stan ard response types such as Butterworth, Chebyshev etc. can be synthesised. High rder filters can be produced but, for very arrow band filtering at frequencies abe severe insertion loss penalty with orders of three and above.
Resonator filter example. Fig. 5 shows he response of a resonator filter wich The specification that is achieved is: Centre frequency $\quad 149.950 \mathrm{MHz}$ Eandwidth $(-3 \mathrm{~dB}) \quad 30 \mathrm{kHz}$ Insertion loss $\left.f_{0} \pm 0.5 \mathrm{MHz}\right)$ Package
\qquad -60dB

Delay lines
Using surface acoustic wave techniques it is possible to make delay lines (tapped o-
fixed) with delays in the range 400 nanose conds to 30 microseconds which are accurately defined and highly reproducible.
The substrate length required is of the

fig. 3. Measured frequency response of 24MHz s.a.w. transversal filter showing low ripple and very ste
bandwidth is 3.7 MHz .

fig. 4. Measured wideband (rize ig. 4. Measured wideband frequency
response of 124MHz s.a.w. transversal filter highlighting the excellent stopband
order of 3 mm per microsecond. Band-
widths of up to 100% can be centre frequencies from 10 MHz to greater than 1 GHz . A linear phase response can be achieved within the passband.

Oscillators

For low noise stable oscillators operating at For low noise stable oscillators operating at
high frequencies, surface wave devices are rapidly becoming recognised as the best control elements available. Using s.a.w. resonators or delay lines it is possible to
make oscillators operating at fundamental make oscillators operating at fundamental
frequencies between 50 MHz and 1.5 GHz , eliminating costly multiplier chains and spurious modes of oscillation.
A typical surface wave oscillator might
have a fundamental frequency of 400 MHz have a fundamental frequency of 400 MHz ,
a long term stability of better than 3 p.p.m. /year and a short term ($<10 \mathrm{~s}$) stability (Allen Variance) of 10^{-9}. Frequency variation with temperature is small (illustrated in Fig. 6) and it is possible, with compensation or ovening to improve this still
further. A typical oscillator noise figure at 400 MHz is $-140 \mathrm{~dB} / \mathrm{Hz}$ at 10 kHz from carrier. Some f.m. capability may be provided (sufficient for most audio communications purposes) using a voltage controlled element.
The small size an
cillators are two of their particularly attractive features and, if the oscillator is made as a module (including s.a.w. component and amplifier), the whole device will usually fit into a space of approximately
$2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 1 \mathrm{~cm}$. Recent developments have resulted in an oscillator which fits into a volume of $1 \mathrm{~cm}^{3}$.
Typical applications include local oscillators for telemetry applications (radio-
sondes etc.) and fixed frequency, low noise oscillators for communication purposes.

Environmental

Temperature characteristics. In general the centre frequency and delay of a s.a.w. device are temperature dependent. There are several materials available for use as material depends on the required temperature characteristic, bandwidth and insertion loss. Substrate materials suitable for narrowband devices generally have a better temperature performance than those for
wideband devices. However, it is possible wideband devices. However, it is possible
to have temperature stable wideband devices if high insertion loss is acceptable.
Two of the most popular substrate materials are quartz (with good temperature stability), which is normally used for narrowband devices, and lithium niobate
(with a linear temperature variation of frequency and delay), which is used for wideband devices.
Typical temperature variations of frequency and/or delay are: - Transversal filters with bandwidth
greater than approximately 5% : 94 parts per million per degree Celsius (p.p.m. $/{ }^{\circ} \mathrm{C}$).
Transversal filters with bandwidth less than approximately 5% : less than 80 p.p.m. over range $t_{0} \pm 50^{\circ} \mathrm{C}$ (t_{0} is reference
temperature) temperature).

- Resonant filters, bandwidth greate than 0.05% : 94 p.p.m $/{ }^{\circ} \mathrm{C}$. Resonant itters, bandwidth less than
0.05% : less than 80 p.p.m. over range ${ }^{t_{0} \pm 50^{\circ} \mathrm{C}}$ ${ }^{0} \pm 50^{\circ} \mathrm{C}$. range $t_{0} \pm 50^{\circ} \mathrm{C}$.
- Delay lines: as transversal filters. For very narrowband devices a different quartz substrate is available with a frequency or delay variation of less than 50 ${ }_{t_{0}+50^{\circ} \mathrm{C}}^{\text {p.p.m. }}$ over the temperature rang

Size. Standard or custom-designed pack Size. Standard or custom-designed pack
ages may be used for s.a.w. devices Typical package dimensions are:

- Transversal filters: size depends on filter skirt steepness, stopband level and passband ripple. In general the packag
size will be less than $25 \mathrm{~mm} \times 12 \mathrm{~mm} \times$ 6 mm . TO-8 packages are commonly used. - Resonant filters: size depends on centre frequency and bandwidth. The size is gen erally less than $25 \mathrm{~mm} \times 12 \mathrm{~mm} \times 6 \mathrm{~mm}$. maintaining amplifier) less than $20 \mathrm{~mm} \times$ $20 \mathrm{~mm} \times 10 \mathrm{~mm}$.
- Delay lines: substrate length depends on delay. 1 microsecond of delay requires a substrate length of approximately 3 mm ,
thus a packaged delay line with a delay of 7 ${ }_{\text {microseconds }}$ would be approximately 25 mm long.

Ageing. Ageing is only of importance for narrowband filters, oscillators and dela lines. Current quoted ageing rates are 1-2 p.p.m./year.

General. S.a.w. devices are made using General. S.a.w. devices are made using
standard photo lithographic techniques Although it is possible to make devices

Or Phil White was born in rural Oxfordshire where he lived until ;1969. He went from there to the University
of Kent at Canterbury and obtained an Honours Degree in Electronics in 1972. After experience in a microwave development group he returned to uni-
versity in 1973 to do research into microwave dielectric waveguides and was awarded a Ph.D. In 1976 he joined Philips Research Laboratories and since
then has worked on various aspects of surface acoustic wave devices.

WIRELESS WORLD MARCH 1981

REQuENCY (MHz).
Fig. 5. Measured frequency response of
149.950MHz s.a w. resonant fitter with a 149.950MHz s.a.w. resonant filter with a bandw
$3.5 d B$.

Fig. 6. Frequency of s.a.w. oscillator on
quartz as a function of temperature
quartz as a function of temperature
variation about reference temperature $\left(t_{0}\right)$.
operating at frequencies up to 1.5 GHz , the fine geometries required may impose some
restrictions on the range of achievable per formances at these higher frequencies.

A: Uniform interdigital transducer
used for launching surface acoustic used for launching surface acoustic
waves on a piezoelectric substrate. This transducer has a sin x / x frequency response
in a thin film of metal (usually aluminium
of 500 A - 5000 A thickness) on the polished of $500 \AA$-5000 ${ }^{\text {A thickness) on the polished }}$
surface of a piezoelectric substrate. Application of an alternating potential difference between the two sets of electrodes pro-
duces electric fields below the substrate duces electric fields below the substrate
surface which, for a piezoelectric material, create a periodic mechanical distortion on and within the substrate surface. This
effect may be interpeted by assuming that effect may be interpreted by assuming that
each individual electrode launches a sureach individual electrode launches a sur-
face wave. These waves add in phase at the
synchronous frequency synchronous frequency f_{0}, given by:
$f_{o}=v / d$, where v is the surface wave $f_{0}=v / d$, where v is the surface wave
velocity and d is the transducer period (see el).
vecit
The most commonly used surface acoustic wave is an elastic wave which travels on a
piezoelectric substrate with most of the piezoelectric substrate with most of the
energy confined close to the surface, the
motion decaying exponentially into the motion decaying exponentially into the volume of the material. Usually, more than
95% of the energy is contained within one 95% of the energy is contained wi ropaga-
wavelength of the surface and the propage tion is essentially lossless.
The surface wave velocity is typically
$3000 \mathrm{~ms}^{-1}$. This is five orders of magnitude $3000 \mathrm{~ms}^{-1}$. This is five orders of magnituad
smaller than the electromagnetic wave yelocity and therefore relatively large de-
lays can be achieved with a small path lays can be achieved with a small path
length. It allows the realisation of compact tapped delay lines and the many signal
processing components which employ processin
them.
The best technique for launching and detecting surface acoustic waves on piezo-
electric substrates is by means of the interdigital transducer (i.d.t.) illisustrated at A. It consists of two sets of interspersed
electrodes, each set being connected to a
'busbar' 'busbar'. The electrodes are photo-etched
unctions can be implemented which would be impractical with other technolo ies (e.g. high frequency, steep sided ng pp is necessary. No adjustment or set ting up is necessary. Large time delays volume. The devices are small, lightweight and rugged, and they are capable of meeting military electrical and environmental specifications. The technology is familiar and has been well proved in orer arear ture stable.

To be continued

Further reading
Topics in Applied Physics. Vol. 24. Acoustic Serlin, Heidelberg A. Oliner, Springer-Verlag, Serlin, Heidelberg, New York.
and Use, H. Matthews, Wiley, New York. Reprints entitled "'Key Papers on Surface Acoustic
edited by D. P. Morgan and published by the IEE. These cover the range of transsersal fill-
ters, oscillators and delay lines, also other s sa.w. ers, oscillators and delay lines, also other s.a.w.
components. S.a.w. resonators are described components. S.a.w. resonators are described
more fully in White, P.D., Stevens, R. Surface
Acoustic Wave Resonator Filters, IREE ConerAcoustic Wave Resonator Filters, IERE Conference on Radio Receive
Systems 1978, pp. 93 -100.

Principles: surface acoustic waves and the interdigital transducer

Thus, reinforcement occurs and a surports of the i.d.t. as shown. The i.d.t. is capable of transmitting a band of frequencies centred upon f_{0}, where the wavelength The transducer frequency and impulse responses are determined by the geometry of the i.d.t. The position of each electrode
determines the point in time of the contridetermines the point in ime of the contripulse response; the length by which the electrode overlaps its neighbours determines the amplitude of its contribution.
The i.d.t. frequency response is deter-
mined by the Fourier transform of the The i.d.t. frequency response is deter-
mined by the Fourier transform of the impulse response. Hence the uniform
i.d.t. (where all electrodes have the same i.d.t. (where all electrodes have the same
length) shown in \mathbf{A}, has an impulse reslength) shown in A, has an impulse res-
ponse which, to first order, is a sampled pencangular function and the frequency
rectangonse $H(f)$ is centred upon f_{0} and is of
rese form:
the $H(f)=\frac{\sin x}{x}$
where $\left.x=\mathrm{N} \pi\left[f-f_{0}\right) / f_{0}\right]$ and $N=$ number of electrode pairs.
To design a transducer with a given fequency response, the required fre-
quency function is Fourier transformed to give the associated impulse response. This ive then truncateded to a a suiteabele lenge. Th and
optimised. The impulse response is built optimised. The impulse response is buil
into the i.d.t. by variation of the electrode verlaps and phase inverted sidelobes are achieved by reversing the electrode busbar shows an i.d.t. which has a sin x / x time function built into the structure and hence an almost rectangula frequency response.
If the i.d.t. pattern is either symmetric or If the i.d.t. pattern is either symmetric or
antisymmerric about its geometrical centre then the phase response is linear. T realise non-linear phase designs the i.d.t
strucure must easymmetric. tructure must be asymmetric.
Electrically the i.d.t. can be represented Electrically the i.d.t. can be represented
by the lumped equivalent circuit shown a C_{T} is the static capacitance between the eectrodes. $G_{a}(f)$ is the frequency de pendent radiation conductance which
fepresents the transfer of electrical energ represents the transfer of electrical energy
into surface waves. $B B_{a}(f)$ is the radiation
susceptance and is given by the Hilbert susceptance and is given by the Hilbert The transducer may be driven directly or additional components may be used to
provide an electrical power match to the provide an electrical power match to the
i.d.t. impedance. In wideband filters and delay lines it is not usually advisable to operate the i.d.ts completely matched
since this maximises the level of unwanted acoustic reflections. These s.a.w. device are, therefore, often operated under
mismatched conditions. When analysing

B: Overlap weighted interdigital transducer. The frequency response is
determined by the weighting pattern.

: Lumped equivalent circuit of or synthesising the frequency response of
the i.d.t., the effect of the terminating
electrical circuit must be taken into acelectrical circuit must be taken into ac-
count.
Several piezoelectric materials are suitSeveral piezoelectric materials are suit-
able for use in s.a.w. devices. The best
substrates in terms substrates, in terms of centre frequency
reproducibility and low propagation loss, reproducibility and low propagaion loss,
are single crystals. Quartz generally has good frequency/temperature stability for
the propagation of surface waves the propagation of surface waves; one par-
ticular cut (ST-X) has a parabolic characteristic with a parabola constant of -31.25 $\times 10^{-9}$ degree ${ }^{-2}$. ST-X quartz has a relatively low piezoelectric coupling co-effil
cient and is best suited for narrowband cient and is best suited
temperature stable devices. Y-Z lithium niobate has a high coupling co-efficient but
a relatively poor linear frequency/temperaa relatively poor linear frequency/tempera-
ture characteristic with a slope of $-94 \mathrm{p} . \mathrm{p} . \mathrm{m} / /^{\circ} \mathrm{C}$. This material is thus more suitabbe for use in wideband low loss de-
vices. Several other materials and orientavices. Sveral ther materials and orienta-
tions are suitable as substrates, e.g. lithium tantalate.
Provided the substrate is several wave-
lengths thick, the lower surface may be lengths thick, the lower surface may be
fixed to the base of a package with adhesive, producing a rugged structure capable of withstanding severe acceleration and vi.d.t. are made using standard bonding techniques. Packages are also standard:
TO-5, TO-8, TO-5, TO-8, d.i.1. and flatpacks are com-

Modular frequency counters

Flexible instrumentatıon based on the ICM7216 i．c．
by M．Voznjak

With the introduction of the 7216 family of I．s．i．frequency counter i．cs，
the design of a counter／timer has been greatly simplified．However， construction of a high quality instru－ ment still requires a number of impor tant external circuits．This article des－ cribes a frequency counter module selection of add－on modules which can be combined in one instrument or built as separate units．

There are four devices in the 7216 family， which are identified by suffixes A to D． Types A and B provide frequency mea－ surement and most other features found in D are for frequency measurement applica－ tions only．The pin connections and gen－ eral features for types A and B are shown in Fig． 1.
All ver
and 25 versions of the 7216 have 28 pins， and puts，reset and hold．The remaining three pins select six different modes，four dif－ ferent gate times and a number of other features．The function pin selects fre－ quency counter，period counter，frequency
ratio counter，time interval counter，unit counter or crystal oscillator test．The range pin selects four different gate times，and the control pin activates display blank， display test，crystal select，external oscilla－ external decimal point enable．
All of the circuits to be described use the 7216B and associated components shown in Fig．2．This，module can be connected to various preamplifiers，shapers and pre－ facilities as required．If a 1 MHz crystal is used D_{4} should be connected，and if an external crystal oscillator is to be used， D_{3} should be connected．Alternatively，the internal oscillator can be used，but care
must be taken to ensure stability．Both fixed capacitors should be silvered mica and the trimmer capacitor should be a multi－turn air dielectric type for improved mperature stability．
Decimal point display with the 7216B is chieved by connecting pin 23 to all of the automatically places the decimal point in he correct position for function and range othat frequency is displayed in kHz and perriod in $\mu \mathrm{s}$ ．An overflow condition is
indicated when the decimal point of digit 7 turns on．If the counter is used with a

leading zero blan king exnal oscillator．Other facilities include
reset and a test speed，overflow function

WIRELESS WORID MARCH 1981 prescaler，the decimal point position will prescaler switch are necessary．By breaking the connection from pin 23，the decimal points can be switched off when the prescaler is used．If the counter is to be used mainly for frequency measurement and has a display with separate decimal
points，a range switch with two extra sets of contacts can be used．One set has the decimal points wired in accordance with the gate time，and the second set is wired for prescaler operation．Selection of the relevant contacts is made by tre prescaler needed，a third set of contacts can be used． For other modes，additional contacts must be provided on the function switch，which can then supply power to the decimal
points in the frequency mode and discon－ nect it in all other modes．Decimal point connections for the 7216D are much simpler because there is no function switch．A wiring diagram for the decimal point switching is shown in Fig． 3

Crystal oscillator
If a general purpose counter is required， the internal oscillator is adequate． However，for more critical measurements an external crystal oscillator is recom－ and stable external oscillator which uses a 5 MHz crystal and a divider．The 1 MHz output is fed to the counter module，which must have D_{3} and D_{4} connected．This circuit，although simple，provides a stabi－ ture．

Input preamplifier
Both inputs of the 7216 require digital signals，so a waveform to be measured shaped to produce a square wave．This requires a preamplifier which must pro－ vide a suitable frequency range，input sen－ sitivity and input impedance．As the maxi－
mum operating frequency of the 7216 is 10 MHz ，the input amplifier should have a frequency range from 10 Hz to 10 MHz ． Most commercial counters offer input sensitivities between 10 and 100 mV ．
Achieving a 10 mV sensitivity is not diffi－ cult but，if combined with multiplexing i．cs，the scanning oscillator can cause in－ terference when measuring low level sig－ nals．Using the 7216 and a preamplifier with an input impedance of around $10 \mathrm{k} \Omega$ ，
the maximum sensitivity is limited to the maximum sensitivity is limited to
about 40 mV ．If the input impedance is reduced to around $1 \mathrm{k} \Omega$ ，the sensitivity can be increased to 10 mV ．Although many counters have an input impedance of from valve equipment and in practice a lower impedance is suitable for most appli－ cations．The design in Fig． 5 provides a frequency range of 10 Hz to 10 MHz with
an input impedance of $20 \mathrm{k} \Omega$ ．The input an input impedance of $20 \mathrm{k} \Omega$ ．The input amplifier stage is based on the LM733
video amplifier，which has an externally selectable gain／bandwidth，and the $100 \mathrm{k} \Omega$ attenuator is normally set to minimum attenuation．If pins $3,4,11$ and 12 are left

Fig．4．External crystal oscillator：
open，the gain is 50 and the bandwidth is around 200 MHz ．With pins 3 and 12 con－ nected together，gain increases to 100 and the bandwidth is reduced to 100 MHz ． Connecting pins 4 and 11 together in－ creases the gain to 200 and reduces the resistor between pins 3 and 12 ，interme－ diate values for gain can be selected，and $1 \mathrm{k} \Omega$ provides a sensitivity of 40 mV which， with the chosen input impedance，elimi－ nates in
The amplified signal is shaped by a 74LS13 Schmitt－trigger to obtain a square wave．Because the signal from IC_{1} is not
large enough to trigger IC_{2} ，dc is added by
a resistive network and R_{1} sets the thres hold of triggering．To improve shaping， the second half of IC_{2} is also used． The output on pin 8 of IC_{2} can be fed
directly to directly to input A of the counter chp
measurement to 10 MHz is required．If prescaler or p．1．1．1．frequency multiplier is to be added，it is useful to have a do controlled logic selector and this is pro－ vided by IC_{3} and IC_{4} ．Three inputs are provided and are selected by switching their corresponding control lines as shown
in Fig．6．Transistor Tr_{1} is necessary to improve the signal shape at higher fre－ quencies and without this transistor the 7216 will not operate above about 9 MHz

(he mis not be fod to the 7216 unless power is applied to the counter. R_{1} is adjusted for optimum sensitivity and reliable triggering at 10 MHz

Fig.6. Enable/disable switching for the
prescaler signals.

supply to ensure maximum isolation from the main counter module.
sure reliable grounding is important to enlead must be provided from the frot ground input socket, and an output ground lead must be provided to the counter module. Grounding connections are also necessary for inputs 2 and 3 of the switching logic. There is also a ground lead which goes with +12 V to the power supply on the
main board. In all cases it is best to use two single wires and not screened cable. For frequency ratio and time interval measurements, input B of the main counsignal. As the frequency limit is a logic simpler preamplifier is shown in Fig 7 can be used. Input sensitivity is around 200 mV and the input impedance is around $100 \mathrm{k} \Omega$. his module has a separate 5 V regulator.
Prescalers
If frequencies above 10 MHz need to be measured, a prescaler must be used as shown in Fig. 8. The Plessey SP8629 comprises an e.c.l. divide-by-ten circuit

Fig. 8. 200 MHz prescaler with an input impedance of about 2 kR .

Fig 9. 500 MHz prescaler R should be adjusted for optimum sensitivity at 500 MHz . To reduce stray capacitance it is important to use a Fig. 9. 500 MHz prescaler. R_{3} should be to use the i.cs without sockets.

followed by a t.t.1. divider. The i.c. also contains a differential preamplifier which gives a sensitivity of around 500 mV peak-to-peak. Because this sensitivity is not sufficient, an LM733 is used in the maximum bandwidth mode which increases the sen-
sitivity to 20 mV at 160 MHz and approxisitivity to 20 mV at 160 MHz and approximust be built on a board with an earth plane which is insulated from the chassis, and i.c. sockets should not be used.
For higher frequencies a 500 MHz prescaler can be used as shown in Fig. 9. This
design is based on a Philips hybrid amplifier, type OM335, which provides a gain of 27 dB from 40 to 860 MHz . The input circuit of the prescaler uses a Shottky-diode bridge as an input limiter which is biased fication, the signal is fed into an e.c.l. divider which brings the signal to 50 MHz . This is followed by a high-speed transistor level translator which feeds a t.t.1. divide to bring the signal to 5 MHz .

Fig. 10. Phase-locked loop frequency multiplier. A secondary winding of 15 V at 200 mA is needed for the 18 V supply, but the 5 V rail can be
counter module.
The prescaler has an input sensitivity of 15 mV up to 520 MHz , and the powe supply requirements are 24 V at 35 mA , 5.6 V at 250 mA , and 5 V at 50 mA . A transformer with two secondaries rated at 9 V 1 A and 30 V 100 mA can be used for the e.c.l. divider can be obtained by connecting a silicon diode in the ground path of a 7805 regulator.
As the regulators dissipate a fair amount of power, a heatsink must be used and it is
advisable to include a power on/off switch advisable to include a power on/off switch
linked to the prescaler switch. Construc tion of the 500 MHz prescaler is similar to the 200 MHz version, however, the hybrid amplifier has rather short pins so care grounded pins to the erth plane. grounded pins to the earth plane.

PII frequency multiplier In some circuits it is necessary to accurately measure low frequencies. Althoug a longer gate time, e.g. 10 s , can be used this method is very time consuming and
not very precise because the frequency under measurement may change. Fre quency multiplication is a superior metho short withe gate time can-be relativ short without losing accuracy. Fig.
shows a suitable p.1.1. frequenc multiplier which uses the simple pr amplifier/shaper described earlier
This preamplifier operates satisfactoril because the maximum frequency to be multiplied is about 350 kHz . A c.m.o.s 4046 p.1.1. is fed by a flip-flop which provides a symmetrical square wave at half the 4013 is used to divide the comparison signal by two. The v.c.o. output from the p.1.1. is fed to the counter and also to a chain of dividers. Frequency multiplica tion is achieved by dividing the compari-
son frequency by 10,100 or 1000 , which produces an error signal and causes the
v.c.o. to give an output of 10,100 or 1000 times the input frequency. Therefore, a
1 kHz signal could become 1 kHz signal could become 1 MHz and any
frequency error would be multiplied by 1000.
The maximum frequency and range are limited by the 4046. Most devices will operate at 3.5 MHz , which allows a 3.5 kHz
signal to be multiplied by 1000 in about one second. However, if the range capacitor of the p.1.1. is chosen to give an output of 3.5 MHz , there will be a low-frequency limit which will prevent operation over a large part of the audio spectrum. One solu-
tion is to use a second set of contacts on the range switch and connect appropriate capacitors. Alternatively, a compromise can be made by restricting the maximum frequency to obtain a reasonable low-freset to 2.5 MHz , the low frequency limit for one decimal resolution will be around 60 Hz and the low-frequency limit of the v.c.o. will be 600 Hz .
The 4046 provide
wher

The 4046 provides an output on pin 1
which goes from high to low when which goes from high to low when the
v.c.o. is locked. This is used to turn a 1.e.d. on if the circuit is not operating correctly because the input signal is out of range or too small. The multiplier circuit only needs one adjustment to the trimmer capacitor which
limit to 2.5 kHz .
To maintain the correct decimal point position it will be necessary to have a second set of contacts on the multiplication switch. This arrangement is only practical
if the circuit is built in the main frequency if the circuit is built in the main frequency
counter case. If the circuits are combined in one case, it is important to provide further switching so that the v.c.o. has its power removed when not in use. A set of contacts on the main function switch 12 V v.c.o. signal cannot cause interfer.

Display
Although there are 4 -digit multiplexed displays available, such as the NSB3881 and therefore cannot be separately switched. A better solution is to use four dual-digit 0.6 in common cathode displays mounted on a printed circuit board (type , BY69Y Maplin supplies). This provides large display with decimal points that ca ment.
If all of the modules are used there are uite a few interconnections to be made, specially for the decimal point wiring and makes the wiring much neater. Al though the construction of each module is reasonably straightforward, it is important to have sepparate ground connections from and module to the madin counter circuit, and to proiv
regulators.

Fig. 11. Three of the author's instruments. A universal iooMHz counter (top) with frequency,
muitpijier, 200 MH zrequency counter, and a 500 MHz counter using the input amplifier two prescalers and an exterrial oscillator.

WODLD OFAMETIEUTD RADIO

Using rain on 10 GHz The scattering effect of rain on microwave
signals has, for a number of years, been signals has, for a number of years, been
recognised as a potential cause of co-channel interference to s.h.f. communication systems, including satellite communications. In 1978, J. A. Lane of the Appleton Laboratory (Electronics Letters, Vol 14, No
14, pp.425-427) showed that although in 14, pp.425-427) showed that although in
general
tropospheric and precipitation scattering are of less consequence for over-the-horizon s.h.f. propagation than superrefraction and ducting, this is not true over very rough terrain
screening by hills.
screening the 10 GHz amateur band, Clive Elliott, G8ADP who lives in a heavily screened location at Alresford, Hampshire, can work regularly over paths of up
to 50 km by means of trope scatter and is to 150 km by means of tropo scatter and is
convinced that signals are quite often enhanced by rain scatter. Over a particularly difficult 40 km path to G3JVL located at sea level near Portsmouth, effective contacts are largely dependent on rain scat-
ter, with signals maximum when there is ter, with signals maximum when there is
heavy rain virtually overhead ("drizzle" is not sufficient) and in such circumstances signals from G3JVL can often be received regardless of which direction G8ADP's aerial is pointing.
He feels that this form of over-the-hori-
zon 10 GHz propagation is still seldom recognised or used by amateurs, since much of the effort tends to be concentrated on portable operation in conditions where heavy rain is not welcome. Under normal conditions (if the absence of rain can be
termed normal) the signals from G3JVL are about -6 dBn (in 2.5 kHz bandwidth) but in heavy rain may rise to 30 dBn , or about 5 to 15 dBn with the aerial pointing in other directions, including straight up

Electrical interference levels
The latest radio interference report (covering 1979) of the Home Office Directorate of Radio Technology underlines the continuous increase over the past decade of
complaints by the public of interference to sound radio: from 6492 in 1971 to 23,782 in 1979. During this period complaints relating to v.h.f.//.m. reception have gone up from 1773 to 214 while those relating to l.f./m.f. from 4719 to 16,568 . During
the same period there has been an almost equally dramatic fall in the number of complaints relating to television reception (from 58,305 to 20,482) almost certainly the result of the changeover from v.h.f. to u.h.f. tv. It would thus seem, that levels of in-
terference from l.f to $\mathrm{v} . \mathrm{h}$.f. are still rising, largely due, one suspects, to the greate use of contact devices in the form of cen-
suburban London, I find more and more electrical interference to h.f. reception (not covered by the Post Office investigations since these are confined to reception of the ocal radio and tv broadcast stations): small motors (d-i-y power tools, refrigerators)
and radiation from the switched-mode power supplies and timebases of colour tv sets, still compete powerfully with contact devices, particularly where, as in my case, a long-wire aerial runs in place
closely to domestic mains wiring
The amount of interference to radio and tv reception ascribed to amateur transmitters is now very low (although possibly
helped by a change in the way the informahelped by a change in the whe 127 mermation is provided): only 127 complaints arisradiation; and 8 complaints arising from 6 sources for "harmonic" radiation. But one suspects that a certain percentage of the 16,669 complaints ass, aded to conditions causes as "inadequate system immunity", spurious responses etc, were initially investigated as complaints of amateur in-
terference.
The Home Office report indicates that The Home Office report indicates that
domestic contact devices account for an domestic contact devices account for an
impressive 11,423 of the overall total of 46,031 complaints from 35,500 complainants.

"Typical" enthusiast

The longer one has held an amateur licence, the more convinced some of us become that there is no such person as a "typical" amateur - nevertheless it can be interesting in trying to put together such a
composite being. The Cornish Amateur Radio Club recently attempted this by analysing over 80 replies to 200 questionnaires sent to their members. It produced the following picture of their "typical mem-
ber": About 42 years old and has held an ber": About 42 years old and has held an
amateur licence for 7 years after being a shortwave listener for about five years . . became interested in amateur radio as a result of listening . . . interested in all amateur bands from 1.8 to 432 MHz but favours 14 MHz for home use and 144 MHz repeater on his journey to and from work. . initial transmitter was a new factorybuilt rig used with a dipole aerial but has subsequently become interested in home construction of equipment . . . spends including operating . . . generally admires the friendships and spirit of the hobby but is appalled by the bad manners and discourtesy of a small minority of
operators. . also interested in music, hioperators . . also interested in music,
fi, household d-i-y-, sailing and fishing reads thoroughly but seldom contributes to the club magazine . . . believes c.w. (Morse) operating is on the way out but
the club
feels Rayint (emergency scheme) is 'for the younger ones'...feels
he is a good amateur and club member.

From near and far

The propagation-mode that enabled the Brunswick to melasj in St John, New Brunswick to make crossband $50 / 70 \mathrm{MHz}$ least four British 70 MHz amateurs is still uncertain: F2 layer reflection; ionospheric forward scatter; and "double-hop" Sporadic E all have their supporters, although a patch of intensive F2-layer ionisation
seems the most likely. Crossband $50 / 28 \mathrm{MHz}$ contacts were made during December by British stations with VS6BE
and VS6FX in and VS6FX in Hong Kong. The Irish 5 amateur band with VS6BE.
Six radio-equipped Land Rovers, each with a Raynet operator as a member of the crew, spent about a fortnight in the Italian earthquake-disaster area during December
to help rescue operations. An Italian "young lady" operator (I8YCT) maintained radio contact with the Land Rovers during the outward journey and German amateurs also rendered assistance
It came as a shock to those of us who the UK of a "novice" licence (akin to those available in the USA and many other countries) that would permit limited c.w. operation on some segments of the h.f.
bands after passing a Morse test of perhaps bands after passing a Morse test of perhaps
5 to 6 words per minute and a "conditions of licence" type of technical examination to find that the RSGB, in proposing such a facility to the Home Office, has added the off-putting rider that all operation should be under the direct supervision of a
licensed amateur. This would reduce the system virtually to club or family stations and, on the lines proposed, would cost the novice as much as a Class A or Class B licence.

In brief

The 1981 National Amateur Radio Exhibi The 1981 National Amateur Radio Exhibi-
tion is now scheduled for May 28 to 30 inclusive in the Palm Court hall at Alexandra Palace in North London. This hall escaped damage in the fire last year . . The Home Office has raised the amateur
licence fee from $£ 6.40$ to $£ 8$ per annum as from January 1 . . . Members of the Cornish Radio Amateurs Club have formed a Computer Club which meets monthly at Pool between Redruth and Camborne (details R. M. Frost, Trecarne, Alexandra Road, Illogan, Redruth (Tel. Portreath
842583) . .RSGB membership by December 1, 1980 had risen to 27,235 including over 60 per cent of all British amateur licence holders.

PAT HAWKER, G3VA

NIEWS

Britain ahead in computer networking

According to a recently published report,
Britain
rotoably lead the world in linking its niversity computers and in the introduction of compatible dataca ocmumunictions faciilities
imong universities and research instiutes. The eporar is the first review of the activities of the
 ished by the Computer Board and the Research
Councils in April 1979, and covers the period from its inception to August 1980 .
Conerstone of the team's programme is the adoption of satandards for computer to computer
and terminal to computer communications to nn erminal to computer comminicaions of the
ensure the greatest possible integrated use of equipmient by universities and research estabishments. International standards are applied yet exist the team is ensuring that a uniform Ppproach is adopted. The following is a list of standards to which the academic community
$-\times 25, \times 3, \times 28$ and $\times 29$ (as defined in the ecchnical Guide to the Packet-Switched Service PSS) of fritish Telecom).

Breaking into the miale-dominated world of service eng ineering, Pauline Cameron started by
winning an Electrical Industries Training Board scholarshiip to train for a year a t the EITB vinning an Electrical Industries Training Board scholarship to train for a yearat the EITB esearch equipment at $L K B$ Instruments L Ltd at Selsdon, Croy don.

- The Network Independent Transport Serorum) The Network Independent File Transfer -The Network Independent Job Transfer and Manipulation Protocol (both published under dhe auspices of the Department of Industry's These protococls cover the connection puters to packet-swiched networks, terminal cesss to services, and failites for he transfer The aim is to computers at theirs own and ounther estab. lishments by means of a communications hie-
rarchy with local campus networks attached via gratewy mimh mocanes campus one widerorks atactached via facilites. Twenty-four universities and Re-
serch Cuncil search Council sites are among the earld subs-
eribers to PSS. For local communcatys work is being funded to explore and develolop several echnologies iniludiding campus packer-switches, Ethernets and Cambridge Rings. have resulted in extensive co-operation among conputer centrex in unvivero-isieseranan raseanch
instiutes. That degrev of collaboration cis
"is.
 probably unparaleled in any other country and
may be regarded as a measure of the lead which may be regarded as a measure of the lead which
he British academic community has in inplementing communications faciitities among hete-

Is VLSI

just too much?
Semiconductor manufacturers are likely to face severe difficulties not only in making very large
scale integrated circuits (v.1.s.i.) but also in persuading people to buy and use them, accord Vadasz, president of Intel's Microcromp. Leslii Division in the USA, stated at an IEEE confer ence that by 1990 the v.l.s.i. device will have ver a million transistors on a chip. "The ques
ion really is: what do you do with all the tion really is: what do you do with all tha
complexity? This will pose a serious software crisis as well as a marketing problem. As ou odevactop and market them will to develop and market them will girow exponen
tilly. Unless we can put a million softwar people into the workforce by the mid-1980s
don't see how we can really exploit our capabil don't
ties".
On the question of manufacturing the v.1.s. devices in the first place, Mr Vadasz said "Where are the engineers who will do to de de signing, facricating and programming? The
semiconductor industry has a relatively smal base of key technical talent. The curren
shortage of such talent - and the redicted shortage of such talent - and the predicted
future shortages - are maion for both our in future shortages - are major for
dustry and educational institutions Speakers at the conference - on circuits and
computers and reported in the omputers and reported in the December 198 issue of the IEE's newspaper The Institute -
also discussed the future pattern of the industry and what sort of products it will offer as a result of further development in v.i.s.s.i. Mr Vadasz fel hat as commercial success depended on sales to minimise the use of custom-designed i.c "We must provide more complete solutions fo users, so that they do not need a different chi
for every job." One way of achieving this, coording to Bernard List of Texas Instru ments, was to make standard pieces of silico that could be programmed by on-chip softwar
to perform different functions for different cus omers. L. Saehn of Siemens felt that the in
reasing complexity of integrated devices woul change semiconductor firms into systems firms and he also expected "a narrowing market fo new families of microprocessors, because of the
need for software compatibility" need for software compatibility" in users' minds the question of how far the process of integration can continue along the present lines. Presumably there is some physical
limit set by the natural characteristics of the materials, radiation wavelengther stc. used in manufacture, but before that is reached co
straints set by the market could take effect.

European business

 satellitePlans for a business satellite communications
service with Europe, with messages beamed direct to small aerials close to users' premises were outlined by Peter Benton, Managing
Director of British Telecom. The service, due to start in 1983, is intended primarily for large business organisations, with their own internal telecommunications net-
works, and for other businesses with specialist requirements.
Mr Benton said that "The service will exploit
the very latest transmission techniques. This the very latest transmission techniques, This
will not only offer our customers additiona facilities for sending telephone speech, telex, facsimile or computer data quickly between
premises; it will also allow us to act swifty in premises; it will also allow us to act swiftly in
adding more adding more advanced services, such as video-
conferencing, high-resolution facsimile, highspeed data and multi-destination "roadcasts, whenever the customer wants them.
The service was made possible by an agree-
ment reached at a meeting in Paris of the ment reached at a meeting in Paris of the
Eutelstat ECS Council, of which British
Telecom is Telecom is a member. The council decided d to (ECS) so that all but the first five being built will be able to link up with small dish antennae.
This function will augment their original role in This function will augment their original role in
providing new communications links through providing new communications links through
large earth stations like those at Goonhilly and Madley.
British Telecom will install small earth station
aerials -about 4 m in diameter -at locations
appropriate for the users. They will also install ground-level links (conventional telephone
cable, optical fibre, or microwave) to connect the aerial to a user's internal communication
system

Both ECS and Telecom 1, the French satellite system, will have extra transponders fitted to operate at the internationally-agreed small-dish
frequencies of 12 and 14 GHz , supporting transfrequencies of $1 \grave{2}$ and 14 GHz , supporting trans

Fifteen years of

 Pioneer 6Originally designed to have a working life of six spacecraft is still sending back useful data after 15 years of circling the sun in a planetary orbit. The craft has measured torm sund corona; re-
turned data on solar storms and measured a comet's tail. It has made discoveries about the sun and about the solar wind, solar cosmic rays
and the solar magnetic field, all three of which and the solar magnetic field, all thres.
extend far beyond the orbit of Jupiter. Since the launch in December 1965 , the 64 kg
Pioneer has circled the sun 171/2 times, covering Pioneer has circled the sun $171 / 2$ times, covering
iust over nine billion miles and has sent back just over nine billion miles and has sent back
about four billion data bits. Together with Pioneers 7,8 and 9, a network of solar weather stations circling the sun was set up, sending
back data to many sun-watchers.

$$
\text { In Aupust } 1980 \text { it was found }
$$

In August 1980 it was found that Pioneet In August 1980 it was found that Pioneer
had turned itself off due to a momentary powe shortage. Mission controller's at the Ames Re search Center were able to command it back on
again by radio signal and the instruments con again by radio signal and the instruments cons
tinued their observations. The Mission Manager, Richard Fimmel believes that they may

New minister

In the editorial comment in our February 198 ,
issue, it was pointed out that information tech issue, it was pointed out that information tech the appointment of a Minister of Information Technology. The appointment has now been made within the Department of Industry. Mr Kenneth Baker has been given the post and has
responsibilities for telecommunications, compu:

Prestel to control editorially its information providers

In an attempt to boost the present meagre use of
Prestel by he public, the Britis Telcom
boses bosses of this national viewdata service have editorial control on the material offered by the
information providers. For some time British information providers. For some time British
Telecom and the information providers have Telecom and the information providers have
been worried by the poor response of the public been worried by the poor response of the public
to this new service News, November 1980 is-
sue, p .54 . Hitherto this has been blamed on the sue,, . 54). Hitherto this has been blamed on the
slow availability of the Prestel television sets slow availability of the Prestel television sets
which form the users' terminals. But now there are plenty of sets available, and some retailers are inviting people into their shops to see Prestel
demonstrated, attention has been switched to demonstrated, attention has been switched to
another scapegoat - the alleged unattractiveness of the information on offer. Recognising that "the real product being sold
is the information", Frank Burgess, the head of is the information", Frank Burgess, the head of
Prestel's UK marketing organization, writes in our sister iournal Vievodata and TVV User (Jan-
uary issue) that although Bricish Teleco uary issue) that although British Telecom re-
mains committed to the principle of editorial mans committed to the principle of editorial
freedom for the information providers, nevertheless "for -cormercial reasons" its
hitherto neutral editorial position will hitherto neutral editorial position will not be
coninued. "n future database continued "In future database pages will not be
allocated on a first come first served basis but allocated on a first come first served basis but
will only be leased to organisations who can
demonstrate the ability to set up inform demonstrate the ability to set up information
services which will lead to increased set sales services which will lead to increased set sales
and set usage.. Conversely, information providers who have shown littte inclination to provide an acceptable standard of service may not
be given the opportunity to continue renting pages once contracts expire
Thus British Teleco
Thus British Telecom intends to exercise the
authority and responsibility of a publisher, inauthority and responsibility of a publisher, in-
stead of being just a common carrier, which is its normal role in telecommunications. In this respect it will be performing more completely
the function of electronic publishing to a mass the function of electronic publishing to a mass
audience, which was the original idea motivat-
ing the development of its viewdata system.
Indeed, Mr Burgess confirms in his article that Prestel's aim in the confirms in his continuerticle that communication . .
Further prossure on the information pro-
viders mentioned by Mr Burgess will be viders menconed sales promotion of the service.
involve them in sill Here British Telecom are offering a material
incentive in the form of rebates on their charges incentive in the form of rebates on their charges
to the information providers $-£ 25$ for every to the information providers - $£ 25$ for every
directly attributabable sale to a business customer and $£ 10$ for every such sale to a residential cus-
tomer.

Prestel terminal specification
A ioint programme of work between the private publication of the Prestel terminal specification. The specification draws together the three
technologies involved in the Prestel viewdata echnologies involved in the Prestel viewdata
serrice - television, telephone and computer bervice - television,
by specifying the saferty, interworking proto-
col, signal and display requirements of the Prestel system. It imposes the minimum of restric-
tions so that the maximum freedom of design is tions so that the maximum freedom of design is
available to those working on new Prestel termiavaiable to those
nal equipment.
The specification is the result of more than a year's work involving consultation between en-
gineers from all over the electronics industry gineers from all over the electronics industry
and Prestel's own technical staff.
Copies of the Prestel Terminal Specification Copies of the Prestel Terminal Specification,
can be ordered directly from Prestel 4.1 CSU, an be ordered directly from Prestel 4.1 CSU,
Prestel Headquarters, Telephone House, Prestel Headquarters, Telephone House,
Temple Avenue, London EC4Y OHL. The price of $£ 10$ includes provision for a year's
amendments and extensions to the specification

$B B C$'s new u have a chance to make the BBC's new u.h.f. transposer (four are shown intended to bring television to
small communities.

TV transponders for small communities

A new television transposer will be much used
for the extension of u.h.f. television coverage for the extension of u..h.f. television coverage
down to population groups as small as 200 . At down to population groups as small as 200. At
this level the cost per head can be critical and the new BBC design sets out to achieve a high
standard of performance combined with low standard of performance combined with low
cost. It will eventually supersede the previous BBC transposer design, still entering service at the rate of 140 a year, and which will remain operational at about 300 relay stations.
Unveild at a recent BBC designs dep Unveiled at a recent BBC designs department
exhhibition, the new transposer uses the latest extivition, the new transposer uses the lates
components and techniques to reduce the components and techiniques to reduce the
overall cost of providing television coverage.
The basic manufacturing cost has been reduced The basic manuacturing cost has been reduced will bring significantly lower installation costs. The transposer embodies two u.h.f. ssnnthe
sizers. Digital frequency synthesis features in izers. Digital frequency synthesis features in some modern television receivers but for trans-
mission the resolution and stability require-
ments are more stringent The new desit. ments are more stringent. The new designuses a novel phase-locking system that provides the
required performance at low cost and, as the

The comedians Eric Morecambe and Ernie Wise in full wisecracking form as they
elephone, via satellite, Captain Douglas Ridley, Master of the QE2, as the liner sailed off Puerto Rico over 4,000 miles way. They made the call on a
radiotelephone from British Tel International's stand at London's Boat

World standard for video recorders

To unify the recording conditions of the three
broadcasting systems, PAL, SECAM and broadcasing systems, PAL, SECAM and
NTSC, the IEC has issued an internationally
agreed standard for high reo-audio recording.
reo-audio recording.
The standard, IEC Publication 602, is suit able for reel-to-reel and cassette recorders in all television standards. Specifically it defines
detail the electrical and mechanical parameters for the professional 'segmented field' video recording system on one-inch tape. The
recording format in the standard is known mercially as the BCN-recording system which merciale as the BCN-recording system which the international system. IIts application will
ensure the interchangeability of recording be ensure the interchangeability of recording be
for the 525 -line, 60 -field system or the 625 -line 50 -field system.
The standard video signal is recorded in seg
ments of 52 lines, which leads to 6 segments each of both video heads for composing a co plete television frame in PAL or SECAM. Fo NTSC only 5 segments are needed. Fo recording high quality audio signals, three
racks are available of which the third has bee standardized as that for time code recording.
ecessity for setting-up adjustments has bee replacement of faulty modules. Another advan age of this system is that the output frequenc
is fixed even though the input frequency may fixed even though the input frequency may channel interference in some situations. Although specifically designed with small
pockets of population in mind, the equipment can be used in larger service areas with an add n power amplifier. Many such stations are stil o be built and this arrangement has the advantage the BBC say of improving operational effi-
ciency by limiting the variety of equipment in service. The picture shows four of the BBC's new
ransposers mounted in a 19 inch rack.

NPL forms speech recognition club

Team leader Brian Pay (standing) and colleague John Yardley with the NPL auto

Ceefax sub-titles improved

stream there is a continuous identification tak
ing place of the phonetic features from the ing place of the phonetic features (from the range of 16 which they contain, and a complete
analysis in terms of these 16 fatures is pro duced every 10 milliseconds. The analysis is
done in two parts: a qualitative analysis which
distinguishes between sounds and fricative sounds; and a quantitativ analysis which measures the strengths of th different constituents, such as the amplitudes of
frequency components. For rrequency analysis,
in frequency components. For frequency analysis,
in addition to conventional filters the system usses autocorrelation analysis as this is more
effective with the very short duration frequency effective with the very short duration frequency
components which occur in speech. The in components which occur in speech. The in-
formation so produced, which consists of identified features in audio signal form, then passes
into an interface which, under microprocessor into an interface which, under microprocesso
control, converts it into the binary digital form of 64 bits in parallel every 10 ms . Reduction of the data rate to this level allows rormation is fed into the digital computer Her the basic process is to compare the incoming list of phonetic features with stored phonetic specifications for each acceptable word in a pre-de-
termined vocabulary. At another level a list of matrhes with altached probabilities is stored.
Overall match is deduced in terms of the Overall match is deduced in terms of the
permitted syntax. The vocabulary of the system permitted syntax. The

 have tuken at least two nond a half dyyss

 on a monitor. Also displayed is the programme time as the programme.
The Thander SC110 portable oscilloscope from Sinclair Electronics Ltd was the on
British product to win a gold medal at the Brno Trade Fair in Czechoslovakia. The osciloscope weighs less than $21 / 2 / \mathrm{lb}$ and has a 2 in c.r.t. It has a basic specification of
single trace, 10 MHz bandwidth and 10 mV sensitivity

and a purpose-built keyboard may be used to
sub-title the progray sub-utue the programme by adding the text to
the monitor display. Fixed points in the pro gramme may be selected and added to the subtitles and all the information is stored on
floppy disc through the mini-computer. floppy disc through the mini-computer
On transmission, the time code on the master tape is fed to a mini-computer where it can be
synchronised with the time code on the floppy sape is red to a mini-computer where it can be
syiscr. Thise sub-tittes the are cone on on the floppy to the main
defer Cefax computer and transmitted at the same
systems might be used to improve the perform-
ance of pilots flying aircraft.
The NPL technique is able to operate with
The NPL technique is able to operate with continuous speech in real time because it does a
maximum amount of identification in analogue circuits before using a digital conputer. Insead of doing extensive audio signal processing by recognition systems - which would be a slow business in cheap and simple processors -
uses pre-processing hardware for this purpose The computer that completes the recognition task can be quite a sman. hardware analyses the speech in terms of particular phonetic features which relate directly to
the control of the articulatory mechanism. Sixthe control of the articulatory mechanism. Six
teen of these features are used, though about 40
are are known altogether. They are not exactly the phonemes as understood by phoneticians but
are features such as whether the sound is produced by the larynn (voiced) or not (unvoiced),
whether it is a nasal sound, and which of eight possible vowel type sounds it is. Since thes phonetic features relating to the articulatory
mechanism are common to all human beings the mechaiqu is intrinsically suitable for a variety of
technique speakers. There are no problems, for example,
because of the differences between male and female voices. The method, too, is designed for
telephone-type bandwidths of about $300-3000$
 In the analogue pre-processing hardware the
speech sounds are first converted into audio
signals by a micropone the equipment does not have to be switched on another person. Prototype systems based on this approach have been tested for medical and
avionics reveal details of these applications, but it is reveal details of these applications, but example, that the Royal Aircraft Establishment, Farnborough, have been studying how direct voice input command
systems
 uous input of spoken numbers, words and
phases is possible the data capture rate is as high as that achieved by keyboards, according to the which automatically detects particular com
mands in conversational speech. Consequently

MSF pulse recognition

This circuit is an adaptation of the design by A. F. Cross in Feb. 1976. By using an northodox form of monostable, only one 4081 i.c. is used with one inverter. The pulse timings are shown in miliseconds
from the carrier on-off transition which marks each second and minute. The $470 \mathrm{pf} / 100 \mathrm{k} \Omega$ networks at the gate inputs roduce short pulses at the times shown. Operation of the RC networks depends on Because monostable A is not retriggerable, it protects the following circuit from noise ignals for 95% of each second. The pulse durations must be measured to determine the values of the monostable timing resissupply voltage and the particular 4081 used.
G. Jackso

X-Y plotter time-base
With S_{2} closed, S_{1} is closed and the circuit operates as a standard unipolar trianglewave generator which is controlled by R_{1} nd C_{1} / C_{2}. When S_{2} is opened, the output IC_{1} stays at approximately 0 V until S_{3}

Fast a-to-d converter
By cascading several of the comparator circuits shown, fast conversion times, 8μ convert command is required because continuous ripple conversion is used. The design can have any word size and can be extended without alteration to the existing circuit, and the full-scale input voltage can Each block has a reference and an analogue input, together with one digital and one analogue output. The reference input is fed from a R-2R-4R ladder and if the analence, the digital output goes to zero and the analogue output becomes equal to the input voltage. However, if the analogue input is greater than the reference, the
digital output goes high, and the analogue digital output goes high, and the analogue put minus the reference voltage.
P. McChesney

Wirral

Audio sweep generator
A useful sweep generator can be built by combining the voltage controlled generato
by J. W. Howden in Nov 1972, with the single i.c. function generator by J . W Richter in Nov 1976.
Op-amps $\mathrm{IC}_{2}, \mathrm{IC}_{3}$ and the c.m.o.s switch form a voltage controlled trianglewave generator which operates over thre
ranges by switching C_{T}. The triangle wave is shaped by IC_{4} to produce a sine wave which is then buffered. An oscilloscope time-base signal provides a convenient sweep input and $\mathrm{IC}_{\text {la }}$ converts this to a point. Frequency range and shift controls are also provided so the sweep range can be set, for example, to $1-100 \mathrm{~Hz}$ or, by altering the shift control, $10-100 \mathrm{~Hz}$. The complete circuit operates from $\pm 6 \mathrm{~V}$.
K. Padmanabhan

India

Magnetic recording review

Recent developments in tape recording in general, and cassettes in particular
by J. Moir, F.I.E.E., James Moir and Associates

For those readers with only a limited inolvement in magnetic recording, a resué of the subject may be useful.
Basics. The recording process is outlined in Fig. 1. The magnetically coated tape passes across the gaps of three ring-type
heads in sequence. The first head is ener gized by a high-frequency 'erase' waveorm which magnetically saturates the tape oating, effectively eliminating any fevious recording. The second head car ries the signal to be recorded, plus a high
frequency bias waveform that 'linearizes he intrinsically non-linear magnetic ecording process. The third head pro ides a replay signal
Signals in either analogue or digital form ape coating by a ferrous head, which has narrow gap to produce an external field hrough which the tape passes. The data is ead off the tape by replay heads of the ame basic design; indeed, many domestic ecord and replay. The tape/hea relationship results in the information be ing stored as variations in the density of magnetization along the tape, a sinusoid ignal leaving a variable density-of-magne-
ization pattern rather like that in Fig. 2. Though the primary variations in tape magnetization exist along the tape it will be appreciated that there is a small compolitte significance when recording low sig
nal frequencies, but it is one of the factors hat limits the achievable performance als recording high-frequency audio sig nals or digital inputs at a high bit rate. Magnetic information storage of this general type was proposed by Poulsen in
1900 and applied practically by Stille in the late 1930s, using steel wire or tape, but the techniques had no real commercial significance until Telefunken in Germany developed ferrous-coated PVC tape as the not become widely known until the end of he last war.
In the thirty years since the commercial appearance of magnetic recording, tape peeds have fallen from the $30 \mathrm{in} / \mathrm{s}(76 \mathrm{~cm} / \mathrm{s}$) used in the original professional equip
ment to $1 \% \mathrm{sin} / \mathrm{s}(4.7 \mathrm{~cm} / \mathrm{s})$ in current domestic cassettes. The performance of a professional cassette recorder is in, most espects better than that of the $30 \mathrm{in} / \mathrm{s}$ pro essional recorder of $1945 / 50$. Using the appropriate tape, a good example of a
modern cassette record/replay machine will have a frequency response that is fla within about $\pm 1 \mathrm{~dB}$ between 30 Hz and 15 kHz , with harmonic-type distortions in he region of 2%, a signal/noise ratio of tions of under 0.1% at a tape speed of $4.7 \mathrm{~cm} / \mathrm{s}$. Professional $1 / 4 \mathrm{in}$ tape recorder of current design have a frequency res ${ }_{2}$ ponse flat to within $\pm 1 \mathrm{~dB}$ from 30 Hz to range around 1%, a signal/ noise retio excess of 75 dB and speed-modulation distortions in the $.05 \%$ class. Digital tape recorders will comfortably exceed these performance figures, the speed-related
distortions being almost non-existent distortions being almost non-existent. stored in the minimum length of tape at
he minimum cost the logical commercia arget) it is obvious that the wavelength of the signal recorded on the tape must be as hort as can be achieved. This implies, mong other aspects, the tape
The lower limit to the wavelength that can be recorded and reproduced is set by he practical difficulties in producing heads with gap lengths in the region of 2 microns (about. .0001 in) and on the molelest magnetizable particle that it is possible to produce for the tape coating. These limits are being approached in television 15 MHz and bit-storage densities of 4 5 MHz and bit-storage densities of now in use.
minimizes the cost of the tape, it focuse attention on the transport mechanics Lack of contact between tape and replay head introduces a high-frequency loss of
55 dB per wavelength of separation. At ape speed of $4.7 \mathrm{~cm} / \mathrm{s}$, a 10 kHz signal has wavelength of approximately 0.0047 mm : a head-to-tape spacing of this amount would esult in a loss of 55 dB , an intolerable los ven in a machine having no particula retension to high fidelity.
elity. point at which to
in the magnetic state o he tape during the recording proces. Neglecting the effects of the high-fre quency bias in linearizing the recording coating follow the usual B / H relation for frrous materials familiar to all power engi neers and shown in Fig. 3, the flux in

Fig. 1. Tape/heads schematic

A sinusoidal signal produces a sinusoidal distribution of flux along the tape
Fig. 2. Density variations along the tape

Fig. 4. Gap loss
creasing along the curve as the magnetizing force H is increased, but falling back along a different path as the magnetizing force decreases. When H has fallen to zero value B_{2}, the remnence expressed in gauss (in SI units). To reduce this residual flux to zero, the magnetizing force has to be reversed and increased to H_{3}, this value being known as the coercivity (expressed in oersteds).
Remanence and coercivity are of primary importance in indicating the perform-
ance of recording tape. The remanence is significant in indicating the flux amplitude that remains in the tape coating after magnetization under the record head, for the
signal obtained on replay is directly signal obtained on replay is directly
proportional to it. The importance of high coercivity is less obvious. It indicates the extent to which the recorded tape coating will resist demagnetization, in the record head gap, by the high-frequency bias field extends well beyond the point in the tape path at which the higher-frequency signals are impressed on the tape. From this aspect, high coercivity is essential in ensuring a good high-frequency performance, higher power in the erase head and a higher value of bias current in the record head to ensure the optimum performance.
Heads. Record and replay head design and construction have greatly improved in the
last few years and both aspects justify some
brief comment. Narrow head gaps are necessary if a good frequency response is to be achieved. This is made particularly obvious if the replay process is considered. At the frequency at which the gap in the
core covers two half cycles of the recorded flux wave there will be no net flux through the core and no output will be generated. The relation between gap width and output voltage has been investigated by sevoutput voltage/gap-width relation is as shown in Fig. 4, the first zero appearing at the frequency at which the gap is two half wavelengths wide.

$$
V_{\text {out }}=\frac{\sin \pi d}{\lambda} / \frac{\pi d}{\lambda}
$$

A similar relation applies if the head gap is not at right-angles to the edge of the curring at the frequency at which one odge of the recorded track is two half waves ahead of the other edge. Thus the basic design requirement for a good frequency response is a narrow and dimensionally uniform gap which is at right-angles to the
guided edge of the tape. Small size, high resistance to abrasion by the tape coating and of course, high efficiency obtained by a magnetic design that ensures that a high percentage of the available short circuit tape flux passes through the head core are
all desirable design targets. A high degree of rejection of external magnetic fields is

Fig. 3. B / H curve
an additional practical advantage in minimizing hum pickup.
The same general requirements apply to
the design of the record head complicated to some extent by the need to dissipate several watts from the record amplifier without undue temperature rise. Recent developments in tape coatings have generally increased the power required to
produce magnetic saturation of the coating, and have thereby increased the head designer's problems. Achieving gap widths of around 10 microns in record heads is not quite as important as in replay heads, be-s cause it has been shown that the magnetic
signal remaining on the tape following its passage over the record head is due to the combination of record and bias fields that exist at a point beyond the record head gap. Thus, the recorded frequency red mity rather than mean gap width However, it is common practice in domestic machines to use a single head for both record and replay and to accept the compromises that are then necessary.
Apart from the need to achieve narrow and uniform gaps in the heads, there is an ${ }^{2}$ obvious requirement to minimize hystere sis and eddy-current losses in the head material. Designers usually achieve this by of a low-loss, nickel creasingly by moulding the heads from one of the ferrite derivatives.
Bias It is necessary to 'linearize' the basic magnetic recording process, because the
relation between the applied magnetizing force and the resultant flux density is non: linear. The basic relation between the applied magnetizing force H and the resultant magnetic flux B, in any iron circuit has the familiar form shown in Fig. 3. If no remedial measures were taken this would
result in the transfer characteristic, the input/output relation outlined in Fig. 5. The gross non-linearity of this relation is not acceptable in an analogue system, so it is standard practice to linearize the transfer characteristic by applying a high-fre-
quency $(80-150 \mathrm{kHz}$ bias waveform to the record head, in parallel with the signal. The linearizing process is very effective, for the overall distortion generated by the system non-linearity can be in the region of
$3 \%-5 \%$, with a signal/noise ratio exceeding $3 \%-5 \%$, with a signal/noise ratio exceeding
55 dB , even with domestic cassette record/ replay equipment. Experience suggest
that head saturation is frequently responsible for much of the residual distortion found in many recorders, particularly in
machines hastily modified to use the highmachines hastily modified to use the highbecome available.
It is a little unfortunate that practically all the tape performance parameters are functions of the amplitude of this high-
frequency bias, the performance at high frequency bias, the performance at high
signal frequencies (short wavelengths) being rather critically dependent upon the ratio of signal to bias amplitudes.
Though the actual bias frequency is not
important, provided that it is high comimportant, provided that it is high com-
pared to the highest signal frequency, the pared to the highest signal requency, the
waveform of this bias signal is very significant. Any waveform assymmetry implies the presence of a d.c. component, which results in some residual magnetization of the tape and an increase in the intensity of
the magnetic component of the total the magnetic component of the total
system noise. It appears almost impossible to avoid some increase in tape noise due to this residual magnetization, bulk erased
tape generally being at least 2 dB quieter tape generally being at least 2 dB
than tape erased on the recorder.
than tape erased on the recorder.
Noise. Finally comes the question of the
noise generated by the tape system. There noise generated by the tape system. There
are two main sources of noise; that generated by the electronic circuitry in the early stages of the replay amplifier and that due to the magnetic characteristics of the tape.
Circuit noise will not be considered in any detail, for the mechanism that produces the noise is no different to that producing noise in any amplifier system. In good machines, the thermal agitation and $1 / f$
noise due to the amplifier is at least 10 dB nelow the magnetic noise produced by the tape coating, and is therefore of no great consequence.
The basic. system signal/noise ratio can
Thsequen be improved either by an increase in the tape or by a decrease in the residual 'magnetic' noise that results from the passage of magnetically clean tape across the replay head gap. An increase in the amplitude of the recorded signal can be achieved by or by an increase in the remanent flux or by an increase in the remanent flux
density of the tape coating, the limit to any increase in the flux density being set by the consequent harmonic distortion. Doubling the track width doubles the replay signal
amplitude but magnetic noise, being a ranamplitude but magnetic noise, being a ransquare root of the track width. In consequence halving the track width decreases
the signal level by 6 dB but reduces the the signal level by 6 dB but reduces the
tape noise by 3 dB . Thus, halving the track tape noise by 3 dB . Thus, halving the track
width decreases the s:n ratio by only 3 dB width decreases the s:n ratio by only 3 dB
but may double the amount of data that can be stored on a given area of tape. It will be seen from a later discussion
that much of the s:n performance lost by that múch of the s:n performance lost by
the track-width reduction that has octhe track-width reduction that has oc-
curred in recent years has been regained by improvement in head design and tape coatings during the same period. Narrow tracks are now in very widespread use. The internationally standardized audio wide with guard bands 0.35 mm wide between adjacent tracks. A s:n ratio of about

Fig. 5. Transfercharacteristic

Fig. 6. Cassette track geometry

${ }_{\text {BiAS }(\mathrm{dB})}{ }^{+5}$

Equalisation
DIN calibration tap
MOL 315 : Maxinum outpout Level at 315 Hz
Fig. 7. Typical tape performance data

58 dB can be achieved without the use of any electronic enhancement techniques ployed in audio cassettes is illustrated in Fig. 6. Data storage designs can achieve an adequate s:n from tracks that are only adequate
0.1 mm wide
The tape-c
The tape-coating noise is a combination of several effects. For minimum noise, the
unrecorded virgin tape coating should be a smooth, uniformly dispersed aggregate of small magnetic particles, displaying no external magnetic field. In virgin tape it is will either be completely free of residual
magnetism or that there will be a large measure of non-uniformity in the orientation of particles that are only slightly magnetized. In consequence, there will be a
high degree of cancellation between the high degree of cancellation between the
magnetic fields of adjacent particles and a very small external field. Any non-uniformity in the particle distribution or any non-uniformity in the particle size or mag-
netic moment will reduce the possibility of netic moment will reduce the possibility of
complete cancellation between adiacent complete cancellation between adiacent
particles. and a net external field will paptear at the coating surface and induce a noise pulse in the replay signal as the magnetic non-uniformity passes the replay head gap.
The first step in reducing tape noise is
the use of a coating powder which has particles of the minimum possible size, evenly dispersed as a coating of uniform thickness. Reducing the particle size will reduce the contribution of each particle to
he total external magnetic field and inthe total external magnetic field and inexternal field of adjacent particles. Uniformity of particle distribution in the tape coating will have the same advantage. There is an additional factor that is
known to be of importance. Producing known to be of importance. Producing
particles that are acicular (needle-shaped) and orientating them by passing them through a magnetizing field has been found to significantly reduce the magnetic noise.
Tape coatings
At this point it is convenient to consider the magnetic properties that are desirable in a good tape and to consider just what properties should be improved by the tape
coating formulators.
Tape coating design has been aimed at Tape coating design has been aimed at
increasing the value of the remanence, since this results in a proportional increase in the output voltage from the replay head, but this has resulted in coatings of higher
coercivity. The increased erase and bias coercivity. The increased erase and bias
field strength that are necessary cannot be provided by the majority of earlier machines, a limitation that will be covered in greater detail later in this review. The ideal tape coating would have a square sity closely approximating the peak value -an ideal that is being approached by recently introduced tapes. 'Squareness' values, the ratio of remanent to p
is now in the region of 0.80 to 0.9 . In summary, the tape coating designer is attempting to develop a magnetic medium that has high remanence, 'highish' coercivity and low noise and in this they are being
very successful. The coating design technivue justifies extended consideration.
The first coatings, developed in Germany during the second World War, were gamma-phase iron oxide, $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ or jeweller's rouge, a material widely available, by the paint industry and, in consequence, available at low cost. The magnetic characteristics were reasonably good, remanence values around 900 gauss being achieved with coercivities of about 300 oersted. De-
velopment for tape-coating purposes was aimed at improving the magnetic charac

WIRELESS WORLD MARCH 1981
teristics of this gamma-phase oxide, the produce smaller particles. Techniques for shaping the particles to give a high length-to-width ratio were developed and coating uniformity procedures improved. All this 0.25 in tape for use in open-reel machines running at speeds of $7.5 \mathrm{in} / \mathrm{s}$ and higher. There are obvious cost advantages in running the tape at lower speeds, but this results in recordings of shorter waverecord. The introduction of the cassette format, using tape running at $4.76 \mathrm{~mm} / \mathrm{s}$ ($1.7 \mathrm{sin} / \mathrm{s}$) with tracks only 0.66 mm wide, and the rapid acceptance of this format by the public focused attention on the need
for tape formulations that had an adequate performance at these low speeds, implying performante at of 0.02 mm at 20 kHz . As a parallel development, the basic noise from the tape had to be reduced to compensate for the reduction in the s:n ratio
by the reduction in trackwidth.
The standard gamma-phase ferric oxide was further improved by the addition of small amounts of other metals such as cobalt, manganese, nickel, zinc, titanium the process of precipitating the basic ferric the process of precipitating the basic ferric
oxide from the primary salt solutions. Cobalt proved to be the most effective additive, but the resulting compound was found to have magnetic characteristics that were rather temperature dependent. At 1500 gauss and coercivities around 300 to 600 oersted could be achieved. Coatings in which the cobalt was absorbed into the surface of the oxide particle proved to be
less temperature dependent than ferric/cobalt compounds and could be designed to achieve coercivities in the range of 300 to 600 Oe with remanence values of 1500 gauss.
Chro
but experience suggest that the boundary of the two layers appears to be magne-tically-visible, raising some problems of frequency-response equalization. date with comment about metal particle tape and metal coating tapes. Tape coattings consisting of pure iron particles have outstandingly good magnetic qualities and can be produced with particles having a is a rather large 'but' - the particles tend is a rather large 'but - the particles tend air, forming ordinary rust. There are similar adverse reactions with the tape base and with the conventional tape binder. It is this chemical activity that has delayed the
appearance of pure iron coatings in spite of their outstanding magnetic properties. However, the problems are being rapidly overcome and several pure-iron-coated tapes are now commercially available, al beit at a farly high price.
Experimental tapes have been produced in which the metal coating is plated on to the tape. Very thin coatings with excellen magnetic properties can be produced and the basic tape noise is very low, but corrosion, poor wear resistance and poor repro-
ducibility are problems yet to be solved before such coatings become commercially available.
Though these metal particle and metal coatings have high remanence, low distor
tion and low noise, their high coercivity tion and consequent high bias requirements make it difficult to take advantage of the excellent intrinsic performance.
Coating thickness has a significant effect on the magnetic performance, particularly in respect of frequency response and signals to be transferred to the adjacen layers of a spooled tape. Print-through will obviously be reduced by any increase in the thickness of either the tape base or the coating.
The e
The effect of coating thickness change on the overall frequency response is relati-
vely obvious. The short-wavelength, high vely obvious. The short-wavelength, high-
frequency flux is confined to the surface of the tape in the vicinity of the gap, whereas
the long-wavelength, low-frequency field extends more deeply into the tape coating At the highest frequencies, the flux only penetrates into the surface layer adjacent to the head. In consequence, an increase in the coating thickness only increases the
signal output at low and middle frequencies. This is of value in those applications where the required frequency response is limited, but where the frequency response of the system must extend to frequencies of 15 or 20 kHz , it is advantageous to use a electrical equalization that would be necessary to achieve a uniform and wide frequency response from a thick coating.
Bias settings
As noted earlier, the recent developments As noted earlier, the recent developments in tape coatings have resulted in tapes of
increased coercivity, requiring higher bias levels for optimum performance. Many miliens of machines were in the hands of
the public before the high-bias tapes be-
earlier recorders can provide the bias and erase field strengths needed for optimum performance from the metal tapes now
available. This is very significant available. This is very significant, for not
only are these early low-bias machines incapable of realising the performance that is intrinsically available from the high bias tapes, but they can only achieve a perform ance that is significantly inferior to that obtainable from
bias ferric tapes. bias ferric tapes.
Analysis of th
Analysis of the performance of severa
hundred samples of currenty casseted samples of currently available cassette tapes shows that they can b
divided into five classes based divided into five classes based on their bia
requirements, with the simple ferric oxide requirements, with the simple ferric oxide
coated tapes requiring the minimum bias coated tapes requiring the minimum bias
and the metal tapes requiring the maximum bias. It is not possible to express the bias requirements of coated tape in any
really fundamental units because it de really fundamental units because it de pends on coating thickness in a.manne
that cannot be adequately indicated by magnetic measurements on the bulk coat ing material, so indirect methods are in universal use.
Two types of 'reference' tape have been standardized and the major tape manufac
turers have agreed to keep samples of thes turers have agreed to eept samples of these requirements and many other performanc parameters of all the commercially avail able tapes are then indicated by comparin 'reference' tapes are not examples of tapes with an ideal pérformance. Tape pro ducers are perfectly free to market tape with a performance that they consider advantageous in any respect, but the per-
formance is indicated in the data sheets by quoting each parameter in dB with respect to the equivalent performance of the specified 'reference' tape.
The catalogue performance data is usually presented as a series of curves reparameters, a typical example of publish parameters, a typical example of pubish-
ed data being shown in Fig. 7. A brief ex planation is all that is necessary. The top curve show the variations in the maximum output level (m.o.l.) with bias for an arb trary distortion content of 5% at a fre-
quency of 315 Hz . It will be seen that the quency of m .ol. has its maximum at a bias value 5 dB above the bias required by the reference tape, in this instance the DIN T308S example. The next curve SAT 10 kHz illus trates the variation in the m.0.1. at a fre-
quency of 10 kHz and it illustrates one of quency of 10 kHz and it illustrates one of recording, for the maximum available out put at 10 kHz is falling off fairly rapidly with increase in the bias field above
-2 dB , whereas the m.o.l. at the low fre--2 dB , whereas the m.o.l. at the low frequency of 315 Hz is continuing to rise with that any applied signal having a fairly fla frequency spectrum will have the high-fre quency, high-amplitude components in
the signal compressed by magnetic saturation of the tape coating. It also implies that the overall frequency-response relation will vary with the level of the applied sig nal, a limitation that is unusual in any
other component of a hi-fi system. The

Chromium dioxide has magnetic properties that are superior to those of ferric
oxide and has been widely used. Coercivioxide and has been widely used. Coercivi-
ties as high as 500 Oe , with remanent flux densities around 1500 gauss can be achieved, but the basic material is expensive. The oxide particles are very uniform in size, have a high ratio of length-to-
width, have an excellent short wavelength performance and are easily orientated. In the early products the magnetic properties
exhibited some time dependence, but this aspect has been greatly improved in the current product. While the basic oxide is highly abrasive and indeed is the cleaning material used as the coating on several head-cleaning tapes, head wear has proved tapes. This is partly due to the high binder content in most coatings and to the use of lubricants and various surface smoothing and polishing treatments.
which the top layer is chromium dioxide 1μ thick, over a $5 \mu \mathrm{~m}$ coating of ferric mium dioxide coating adjacent to the head gap where its excellent short-wavelength performance can be of maximum value in ensuring high output at high frequencies,
performance of a typical tape at two different signal levels is illustrated in Fig. 8 .
Because all the performance parameters are so bias dependent it will be appreciated that some compromise is necessary in
selecting selecting the value of the working bias.
This particular tape, with the characteris tics quoted in Fig. 7 and biased to +5 dB , will have a maximum low-frequency output some 5 dB higher than if biassed to 0 dB , but the output will be down by $3-4 \mathrm{~dB}$ at frequencies in the 10 kHz region and
some 5 dB down at 12.5 kHz . Thus, the bias point can be chosen to achieve high mid- and low-frequency output and a relatively high value of signal/noise ratio by biassing at +5 dB , but at the expense of a
frequency response that is falling off significantly at frequencies above 10 kHz . Alternatively, the bias can be set to -2 dB to give a frequency response substantially uniform to well above 12.6 kHz at the expense of a sn ratio the at the higher bias maximum ob +5 dB .
There is little uniformity of practice among tape manufacturers in selecting the bias they quote as the optimum, or in specifying the process to be followed in
determining the optimum bias. Each supplier has his own ideas about the relative importance of wide frequency response and a high signal/noise ratio and it is

fig. 8. Response at two signal levels
the relative importance of these factors that controls the bias that is recom-
mended. Simple practice, such as the adjustment of the bias until the maximum undistorted 315 Hz or 1 kHz output is
achieved and then reducing the buas by achieved and then reducing the bias by
anything from two to five dB , is a common recommendation with some reasonable foundation when applied to tape such as that in the previous discussion about the effects of bias. However, the low-frequency output changes only slowly with
change of bias, a result that has led to some designers suggesting that the bias be adjusted to give a flat frequency response by
alternately switching between a 330 Hz and a 10 kHz or 15 kHz signal and selecting the bias point that gives an equal output of both frequencies.
Some tape recorders include facilities for
setting the bias in this way a setting the bias in this way, a simple signal generator switchable between two frequen-
cies being included. The previous discuscies being included. The previous discus-
sion will have suggested that though the final bias will ensure a flat frequency resporise to the chosen high frequency, the s / n ratio is likely to be lower than can be achieved by selecting a higher bias setting
and tolerating some loss of the higher frequencies.

NTERFERENCE FROM MICROS
With microprocessor based toys, trainers and home computers being such a growth industry, I have recently become rather disturbed by the
radio frequency radiation produced by these
devices. For some years I have been using a scientific
programmable calculator which has considerable radiation at 500 kHz - certainly this would reate havoc aboard a ship with the poor radio perator distress frequency of 500 kHz . ${ }_{\text {Probably }} 500 \mathrm{kHz}$ radiation is an exception, but most microprocessors use a clock frequency
around 1 MHz with the internal signals having rery fast rise times. Consequently there is not
ver with the int inconsiderable radiation of harmonics.
Both my Pet computer and my microproces-
sor evaluation system are unscreened and or evaluation system ari hiscreened aH or more - a most irritating form of interference on v.h.f.
I wonder if other readers would care to comment on this problem and if there should be
some legisiation to control interference from microprocessor based systems?
HughD. Ford Hugh D. For
Richmond
Surrey

SATELLITE ORBIT
PREDICTIONS
I was interested to read the brief article by M. oncerning orbit predictions from satellit mages in view of our experiences in this field We University of Surrey.
day-to-day tracking of US and USSR meteor logical spacecraft and the derivation of orbital parameters and ephermeris as this data is no server. We have also expended considerable effort on a similar exercise concerned with the AMSAT-OSCAR series of amateur communica
ion satellites in order to provide medium term tion satellites in order to provide medium term
(three months) orbital calendars primarily inended for the amataur radio fraternity, distriThed through AMSAT-UK
The determination of accurate orbital ephe
meris using the transponders and beacons on meris using the transponders and beacons on
board the Oscar spacecraft has proved to be wkward and imprecise; however, the real-tine spacecraft has certainly provided a most conve nient means for accurate observation. We have
regularly used the borvation of sub-satellite egularly used the observation of sub-satelite
magery correlated with a Droitwich time sourc which has enabled us to determine and predic the ephemeris of the meteorological spacecraf weeks and certainly to within two minutes over the entire three month period covered by the orbital calendar. We have found in practical terms that probably the most precise mea
surements can be taken by observing the image in real time and choosing a well defined landmark as near the equator as possible. Gibraltar
has proved particularly useful in this regard and
it has enabled timing
The data thus collected and correlated over craft observed has enabled us to define the primary orbital parameters and their derivations o. some accuracy. Analysis of the effect of atmospheric drag on the low orbiting spacecraft
NOAA-6, TIROS-N and OSCAR-8 (all around $800-900 \mathrm{~km}$ altitude) over several years has resulted in a good estimation of effect of the drag on the orbital ephemeris.
In conclusion, I would
In conclusion, I would certainly recommend

 USSR meteological spacecraft where no official data has been forthcoming.
M. N. Sweeting, G3YYO

Department of Electronic \mathcal{E} Electrical Engineering
University of Sur
Guilfford
Reference
Orbir Nov Dec 1980 (AMSAT). The Project OSCAR
Orbital Colendar Pp 75 . I enioyed reading M. L. Christieson's article on
weather satellites in the December 1980 issue and no doubt it will be of interest of many Wudding satelilite trackers.
We would however like to correct the state-
ment that "Further data can be obtained from ment that "Further data can be obtained from"
putside but this is not always easy to obtain" Rubbish! M. L. Christieson has not done his homework in the amateur sector. We issue three months which are very accurate. These are
computer derived to 100^{-19}. From the tables enclosed you will see that these also include the two Oscars currently in orbit. Other information on the activities of the Radio Amateur Sate obtained from myself by sending a stamped and addressed envelope to the address below. The cost of the three months Oscar calendar
(TIROS-N/NOAA-6 included) is $£ 1.27$ postage and packing included.
and packing in
Ronald f. $C . B$
AMSAT-UK
94 Herongate Road, Wanstead Park
London E12 5 Q

The author rephies:
The author replies:
Ia glat that Mroadbent enioyed reading my article and that it has been the means by
which his service has been pubicized guite correct that I was unaware that AMSAT publish predictions for TIROS-N and NOAA 6. If fear, however, that he may have missed the point. Long term predictions, as I explained
re subject to considerable drift. Those issued by AMSAT are no different, and are at present pproximately 11 minutes (E.C.T.) and 8 de grees (longitude) in error. The method I desribed can correct this.
Mr Broadbent also
onnection with prediction accuracy. This tefers, of course, to the precision to which the computer can calculate, and bears little
relationship to the accuracy of the prediction relationship to the accuracy
these two are often confused.
M. L. Christieson

THE DEATH OF
ELECTRIC CURRENT neering he might not nowsiscs instead of engiagonizing over the "right" mechanistic model or processes which, in reality, are outside the 1980 issue, p. 79.) It is true that what is happening in a charged capacitor can be considered to be the result of interference between two waves traveliling in opposite directions, but it is easier
to consider it as a distribution of charged particles. Similarly, one can map the currents flowing in the walls of a waveguide, but only a fool
would treat waveguide theory in terms of current electricity.
E and H have no more physical reality than do ρ and \mathcal{F}, being merely constructs in mathe-
matical models. The usefulness of any mathematical model is measured by the accuracy of its predictions and the ease with which those
predictions may be obtained. Although there is predictions may be obtained. Although there is two models, in general it is easiest to use current theory for low frequancy, or orng term or con-
tinuous situations and e-m waves for high frequency or short duration or quantized situations. (This is a broad generalization and, like all such, has exceptions, so please don't rush to
quote them at me!! The proof of any pudding is in the eating. The machines on which much of our civilization is founded (that is, alternators and motors) are model. You may not like civilization, but, clearly, the designs work. However, to say that electromagnetic theory has been ignored and priate, e-m theory has been used in design; the delay-line modulator, developed to pulse radar. magnetrons, is an example. That there are few he historical superiority of the current model. To use an overworked phrase, it is simply a matter of horses for courses. Mr Catt and his ics course is one for which their rediscovered horse is superior. This may be so, but it is hardly justification for an attempt to put down the other con
R. T. Lamb
Post Office College of Engineering Studie
Mitton Keynes, Bucks
The author replies:
he author replies! eversed physicists, and ensineers. I find the
charged particles" in a capacitor very difficult consider, in view of their apparant need to hoot off instantaneously at the speed of light for the dielectric) from a standing start when
he capacitor is discharged. I wonder if our brothers the electrons consider it easy; or can a EM step advance down a transmission line at the speed of light without any electrons being
required to change velocity so abruptly? I conequired to change velocity so abruptly? I con-
der such questions far from easy - hence heory C .
Regarding para. 2 , if neither E, H, ρ nor \mathcal{Y} have reality? You seem to have ruled out the physical eality of electromagnetism - a far bolder step

speed of both 8080 and 6800 processors is insufout introducing flicker and therefore a hardwar read of the display memory must be used as
shown in the diagram shown in the diagram.

The system uses two standard DAC0800 converters to provide X and Y inputs to the oscilloscope and, as can be seen from careful
examination of the display, these are just adeexaminatoo of the display, these are just ade-
quate. It was found that continuous intensity modulation is not necessary. A simple 16-inpu
OR function detects the the display.
There are no problems of bus contention with this system, though prolonged write operation
by the processor do lead to a slight patterning on the screen. This can be eliminated by attention to software.
Leighton F .Man
${ }_{\text {West }}$ Ilkersshire

DIGITALELECTRONICS

 TEACHING In common with other academics, 1 am verywilling to receive comments on sllabus content
from industialists I I therfore read with infrom industrialists. I therefore read with in-
terest the letter from IIvor Catt in your Noterest the letter from Ivor Catt in your No-
vember issue. Mr Catt believes that colleges and vember issue. Mr Catt believes that colleges and
faculties refuse to teach the rudiments of digital electronic design, by which he does not mean
the programming of microprocessors or other the programming of mic
trivial surrogate activities.
I read on, hoping to learn what rudiments 1 should be teaching, but no such huluck. It at appears
that at a seminar held at Hull University to that at a seminar held at Hull University to
discuss college electronics syllabuses Mr Catt discuss coilege electronics syllabeses a mo chati-
$\underset{\text { Please } M r}{\text { ments. Catt, reveal all about the rudiments }}$ of digital electronic design
${ }_{F}^{\text {of digitaa ele }}$. . Cocks
Department of Engineering
Bristol Polytechnic

PICKABACK
DISCHARGES
FOR E.H.T
I was most interested to read Mr J. T. Lloyd's
account (November letters) of his observation accoun (hility of a high-voltage discharge in air to
of the abits. allow the more or less complete dissipation of much higher energy stored at lower voltage in capacitor in series with the discharge. I am re-
liably informed that an application of discharge acting in this way may be found in the design of certain welding equipment in which
the need to establish the arc by brief contact the need to estabish the arc by brief contact
with the work is obviated by a supplementary source of f.f. power which triggers the main arc.
My own experience of the effect has been in source of r.f. power which triggers he main arc.
My own experience of the effect has been in
the design of the design of u.v. oscillographs in which it was
required to strike a two-electrode high-pressur required to strike a two-electrode hish-pressure
mercury lamp. A common method was to apply

Basic e.h.t. ignition circuit for mercury
lamp as used in u.v. oscillographs, with
sup supplementary h.t. source (in broken-line
box). All resistors serve as current limiters RLA is designed to operate repeatedly unti ignition is obtained. e.h.t. to the lamp by means of a capacitive
discharge into a transformer having a secondary (necessarily of very low resistance) directly in
the lamp current path, as shown in the lower the lamp current path, as shown in the lowe
right-hand of the diagram. It became eviden that the energy of such a source was often insuf ficient to re-strike a hot lamp. Experimen
showed that much greater energy stored lower voltage in an electrolytic capacitor could be 'carried across' by placing it in series with the e.f.t.t source, as shown in the upper right-hand
of the diagram. The silicon diode is biased with respect to the h.t. source, and serve to conduct the lamp current after ignition. Thus the anode of the lamp receives a positive first
half-cycle of e.h.t. (about 10 kV peak) to which half-cycle of e.h.t. (about 10 kV peak) to which
is added 350 V from the electrolytic capacitor The respective input energies of the h.t. and e.h.t. sources are in the ratio of about 40:1. A achieved by this method. When this idea was first tested using a gap in
place of the lamp a loud, vigorous spark wa place of the lamp a loud, $\begin{aligned} & \text { obtained. Thin paper placed in the gap would }\end{aligned}$ be readily charred or even ignited.
Like Mr Lloyd, I have considered the application of such a supplementary source e to the
improvement of automobile ignition. It must be improvement
said that under damp conditions such a system would be just as prone to degradation as a conventional one. Suppression could become
problem, as the use of highly resistive problem, as the use of highly resistive e.h.t.
leads would nullify the advantages, and thor ough screening would be required. Finally, I would advise experimenters in this field of the risk of damage to fine-gauge
secondary windings of e.h.t. transformers and ignition coils, in view of the high transient cur rents flowing in such a circuit. Shock will also
be more severe than that experienced with car ignition.
My thanks are due to the directors of Beil \& Howell Ltd, Basingstoke, for permission to des-
cribe details of the lamp ignition circuit of their model 5-137 oscillograph, for which I had some design responsibility while in their employ $\underset{\substack{\text { ment. } \\ \mathcal{F} . D . \\ \text { Farmborough } h}}{ }$ $\stackrel{\text { Farmborough }}{\text { Hants. }}$

MICROCHIPS AND MEGADEATHS
 customer is not quite as ang as that or Mr
Scrogie (December 1980 leters), though have read d ark numbers ging babk. to to 1915 or
so but canno remember any previous attempt so, but I cannot remember any previous attempt
at politicising its editorial and correspondence columns.
The trouble about persons with the wet-
liberal outlook is that they readily respond to Iileceral
and propagate again the propaganda put out in
the and propagate again the propaganda put out
the interests of the USSR. What a letter from
the Campaign for Nurl the Campaign for Nuclear Disarmament is
doing in your pages is far from clear. Has it not occurred to you that the wet-liberal outlook is no longer fashionable?
Philip Short
Philip Short
Gateshead
Tyne and Wear
"I have iust read your November 1980 editoria "Microchips and megadeaths" which must have the approval of all responsible readers. During
the last war at least one mani went to prison for pointing out that "Wars will cease when men refuse to fight". That was forty years ago. Now the picure is somewhat the filghting man who will do the killing but the engineer who produces the hardware. Therefore if we are to avoid further Hiroshimas it is the if we are
technician
refusing. refusing.
Congratulations to Wireless World for stating what so many turn a blind eye to.

Yohn Willmot Bexhill-on-Sea

SPARK GAPS
In his article "Spark Gaps" in the November issue Mr J. Dearden states that the pressure variacion produced within a sealed spark gap by a change in ambient temperature will cause
corresponding change in breakdown voltage (he quotes a temperature variation of $40^{\circ} \mathrm{C}$ as causing a change of 2.3 kV in breakdown voltage)
However, the important parameter in determin ing the breakdown yoltage of a gap of given length is the gas density ${ }^{1}$, since this decides the
number of collisons number of collisons made by an electron in
traversing the gap. The density is proportional to the pressure at a fixed temperature, but in to the pressure at a fixed temperature, but in
sealed gap it does not change with temperature

Hence the breakdown voltages of sealed spark gaps filled with permanent gases are indepen-
dent of temperature, in addition to their other advantages of freedom from contamination of he gas or electrode.
R. G. Mitchell Company Ltd

London W6
Reference
Cobine, J. D., Gaseous Conductors, Theory and
nngineering Applications

LOSS OF M.F. POWER AT SEA
It was with interest I read the correspondence in your August 1980 issue regarding the loss of porer from marine m.f. transmitters, operating
to aerial under gale or storm conditions. The
leter from letter from Mr R.R. Venekamp, Eindhoven,
who confirms by who confirms by experiment, findings and
solution, that these losses are occurring, and solution, that these losses are occurring, and
that dielectric constant loss (W.W. May 1980) is factor not to be ignored, was of particula One important aspect of the effects referred
in, which should not be overlooked, is that the to, which should not be overlooked, is that the reports of loss of radiated power on m.f. which
have been made are confined to instances when have been made are confined to instances when
using a vessel's main or reserve transmitter to the ship's main or reserve aerial, the main ransmitter having a It therefore would seem likely that the losses referred to would have even greater effect when it becomes necessary to use the low power trans portable transceiver, which all merchant vessels
carry for use from the lifeboat. This unit operates on $500 \mathrm{kHz}, 2182 \mathrm{kHz}$ and 8364 kHz ,
with a power with a power output of approximately 3 watts,
using either a telescopic whip or wire antenna using either a telescopic whip or wire antenna
rigged to the lifeboat mast. These antennas would virtually be at sea level and in storm conditions, lifeboat, equipment and crew would
literally be drenched in salt water In such conliterally be drenched in salt water. In such con
ditions, little or no r.f. energy may be radiated. It is on record, though, that these radiall low
powr power lifeboat transceivers have, in the past,
saved lives. It would be interesting to know the sea and air conditions at the time they were successfully used.
A.K. Tunnah
A.K. Tunnah
Sydney, N.S.W.
Australia

COMMERCIAL AND
PUBLIC SERVICE
BROADCASTING
Congratulations on airing an important topic in
your December editorial - but I notice you your December editorial - but I notice yo structure - 16 independent organizations eact with its own engineering and administrativ staffs etc. The BBC is but one organization. S is it fair to compare cossts directly? What's more,
ITV companies make about the same number of programme hours as BBCI and 2 combined because of ITV's regional nature. The commercial greed of ITV? All IPC jour-
nals (including WW) rely on advertising and no nals (including
just counter sales. Is $W W W$ tainted by the need to
sell soldering sell soldering irons? Of course not. Salaries are higher in ITV? Many say the
reverse is true in some areas. You can't uust pick reverse is ruue in some areas. You cant t ust
on those examples that support your case. Un-equitable comparisons, no more meaning
ful than yours, can be made in the reverse direc
ion. As just one example, the BBC's licence fee v channels, three radio channels, over 6000 ransmitters, etc. But nobody says therefore the BBC is inefficient. Circumstances are different.
Having Having studied different countries, I think
the standards achieved by the BBC (and ITV) are due to the particular plural broadcasting structure in the UK. Isn't it irrational to say
BBC (or UK) broadcasters are biologically more BBC (or UK) broadcasters are biologically more
talented etc. than their foreign counterparts? My guess is that it's the unique-in-the-world compecitive situation. It keeps them both
their toes. Remember BBC before ITV? their toes. Remember BBC tv before ITV?
I could add many other counter points to y analysis, but it isn't necessary. Of course it's in everybody's interest to have a buovant BBC.
But please don't argue for it by omiting half the But please don't argue for it by omitting half the
evidence. Base your case on the quality and real evidence. Base yo
needs of the BBC.
David Wood
David Wood

AUDIO KITS

I feel that Mr Evans's letter on audio kits (No-
vember letters) cannot pass without sin cannot pass without some com-
The kit-form hi-fi market contains many inte available power outputs. I fail to see why M Evans knowingly chose one which was fou imes too powerful for his needs. Since, at least terials costs increase I would also be interested to learn how he stimates the amount of time required to build piece of equipment - whatever criteria he em-
ploys are obviously inadequate by a factor of
${ }^{\text {two }}$ Regarding the opportunity costing of such inancial implications of kit building before undertook the task. A major factor in constructga kit is surely to obtain an item equivalent wn labour charges are waived, as is true for any domestic d.i.y. project.
Mr Evans has apparen
Mr Evans has apparently conducted a statisti-
cal survey of the kit-buying public cal survey of the kit-buying public (I was no
ncluded in his sample) since he knows that 60% fhese "are not very fussy people". The othe 4% obviously offered their beliefs regarding k The whole tenor of the letter The whole enor of the letter suggests to me ppears to be a fairly demanding exercise what ittle independent 'homework' regarding a ki product will produce a far better estimate of the work involved than the supplier's advertiseents which are admittedly a little optimistic. Anyone investing over $£ 100$ in a hi-fi kit
should be convinced that they are capable o managing the complexity of assembly that such a price tag usually indicates, or they should patronise a kit supplier who offers an after-sale
repair service. I have built many audio kits in the past few years and would agree with M Evans here: think about it very seriously before
you buy. basic knowledge of electronics I consider is an essential pre-requisite (please forgive that sentiment appearing in this magazine) since
suppliers instructions are, in the nature of things, seldom 100% comprehensive. Few of us can design an integrated stereo amplifier but with painstaking care and patience
many can assemble one from its components and obtain a working item first time. M. G. Taylor
High Wycombe, Bucks.

DESIGNING WITH MICROPROCESSORS Readers of Partt of "Designing with micropro-
cessors'
by Zissos and Valan in the December
 of PRINT problem too seriousty, since apart
from obvious syntax errors in the promat pist ing of table 3 (p.73), the program, it would appear, won't print a single character.
Consider first the instruction MVI C at hev address 1003 . If you load any non-zêro character count in register C, the program will simply appear to jump to location L1 and Halt. Or will
it? As a matter of interest, the instruction MVI it? As a matter of interest, the instruction MVI JZ, it will be a waste of time trying it out. Furthermore, once you manage to patch-up this part of the code and somehow make the
program counter reach L2, the printer will not stop printing garbage (unless man-handled) as the program will enter an endless loop by virtu
of the J IP instruction at hex address 1013 . of the JMP instruction at hex address 1013 .
The authors are certainly not considering an abstract machine with a hypothetical instruction set but exemplifying the Intel 8080 with its well
defined instruction set. How can well known defined instruction set. Hiow can well known
uuthors produce such a piece of code? Perhaps they did not. One possible clue is the equivalent sion about the almost identical nature of solutions applying to all present-day microproces sors, apd to all their modes of operation. The architects of present-day micros certainly bers' products and a mere dictionary transl of mnemonics from one instruction set into nother, or changing, for example, one accumu not produce the same or even similar results, however trivial the program may be D. M. Vaidya
Westfield College

University of London
London NW3

COMMUNITY

DATABASE
While considering a possible format for data ansmission on an f.m. broadcast channel, it occurred to me that in order to control the stertoo band pulse shaper. If the 19 kHz signal were modulated at the transmitter then a simple opto switch "Blu-Tack-ed" over the I.e.d. beacon ould be directly connected to a serial input part system would offer simple front panel connecsystem would offer simple front pane
ion andete electrical isolation. We thus have a method for programme mark mputer owners, we could have computer owners, we could have a 'Computer
Programme' with comment and programmes. We could also have community databases (cf Conmunity Memory Proiect in San Francisco perhaps 'piggy-back' on mono local radio staions. Items could be placed on the database via
telephone network. Access would the telephone network. Access would bb
cheaper than for Prestel and the service would be more interactive than Ceefax or Oracle. However, the maximum baud rate would de
pend on the reaction time of the beacon circuil pend on the reaction time of the beacon circuit

and could be prohibitively slow. I cannot find any figures for this; perhaps somebody can | help. |
| :--- |
| $\begin{array}{l}\text { Yames Kidd } \\ \text { Warringon }\end{array}$ |

fames Kida
Warrington
Lancs Thandar LCD Multimeters
 London Road, St. Ives, Huntingdon, Cambs. PE
Tel:St. Ives (0480) 64646 Telex: 32250

TOP QUALITY REBUILT TV TUBES

Rebuilt on the most modern equipment to original manufacturers' specifications

Linear modulator for radio control

Proportional ‘digital’ control with improved characteristic

The story of this venture began when a friend of mine (who was building a model
yacht) asked if I was aware of a suitable yacht) asked if I was aware of a suitable
circuit for a model control system I recircuit for a model control system. I reago, and a search in the archives of the local library turned up the item ${ }^{1}$. Not having given much attention to this subject before, the principles interested me, and,
having most of the components to hand I decided to build the circuit. I found that it worked quite well, although it was rather large, occupying several circuit boards. I found also that although the control was proportional, it was not linear. tic, I decided to explore the commercial field to see what was on offer and how the control was effected in proprietory equipment.
My findings were encouraging in some respects, I was able to buy control sticks
with potentic whe necessary basic items to produce small receivers. Servo mechanisms and the basic items for the servo decoders and amplifiers were also available ${ }^{2}$. I was disappointed, however, tol find that the transminter modlinear control. I thought, therefore, that it
would be an interesting exercise to try and develop an inexpensive, linear, propor tional modulator, using readily available occupied a relatively small space. The use of integrated circuits sprang immediately to mind. I was advised to proceed with caution, however, since others had tried before and the problem
had been to produce an economically priced unit consistent with the required performance. Whilst things could be done with t.t.t. i.cs, the current consumption was high and several devices were needed On the other hand, the use of c.m.o.s. sumption, but there were snags here because charge storage in certain devices defeated the object of accurate control. Special timing devices such as the 555 were
then considered, but these too proved unthen considered, but these too proved un
suitable for direct control because, although they do have a modulation terminal, a very low impedance modulating voltage is required and this adds to the circuit complexity.
There had to be a compromise though, so the devices were permutated and several
circuits circuivs tried until the arrangement shown evolved. It is a hybrid type, of small size
and low power consumption, but it does produce extremely linear pulse-widt modulation. The limiting factors are th quality of the timing capacitor, the linear supply voltage.
Circuit requirements
The modulator is required to produce a sequential train of pulses, each of which can be altered in width between 1 and 2 ms , manual actuator (control lever moving linear potentiometer). A synchronizing pulse is needed to ensure that the correct pulse is fed to the appropriate servo at the receiving end, and each pulse should be pulse) by a well-defined inter-pulse pause.

Types of circuit. Two methods are gener ally used. In one, the modulator consists of series, each one triggering the following

Fig. 1. Complete circuit diagram of 9channel modulation control unit. Capacitor
C, should be polypropylene or, more C, should be polypropylene or, n

one after the end of its own cycle. The
sync. pulse is derived from a multivibrasync. pulse is derived from a multivibra-
tor, which acts as the overall control section. The inter-pulse pause (i.p.p.) is produced by an individual element triggered by pulses produced when one timing element switches to the next. The i.p.p.
therefore inhibits part of the next pulse and allowance must be made for this. This circuit in its usual form is not linear be cause it relies upon simple RC time constants. In addition, for a large number of channels it uses a considerable number of
components and occupies a fair amount of space. It is, however, very economical on power.

The second common method uses only one timing element, and the various controls are offered to it in sequence (includ
ing one for the sync. pulse). This is known as the commutation method: it generally uses less components in larger systems but a method of producing the i.p.p. mus still be provided. Disadvantages of this method are that a very good timing circuit
and comparator are required and that extreme care must be taken to ensure that there is no interaction between one control element and another. The modulator to be
described shown in Fig. 1 uses the second described shown in Fig. 1, uses the second

Devices

The ideal device for providing commuta tion is the 4017B. It was found, however, that if it was used directly to drive the timing element, the 'on' and 'off' times of happening on other channels. On closer examination it was discovered that only the timing and not the amplitude of the pulses was affected, possible due to charge stor age. The 4017 does have much to recom-
mend it, however, and to do the same thing with t.t.l.1, would require two devices. The answer is to use the device for commutation only and not to make it directly part of the timing circuit. This is
arranged by allowing it to change its out-
put state during the i.p.p. It now has time to settle down before it is required to proand as alreadye for the next timing contro tude is reliable.
To generate the i.p.p. a 555 is ideal. I uses little current and few additional compulse. It can be used in the monostable (triggered) mode and its output can source or sink considerable current. This makes it ideal for the overall controut modulating voltage.
The remainder of the circuit consists of an element which charges a capacito linearly from a constant current source, nents appeared to be the only reasonable answer here but advantage was taken of the CA3046 in view of its compact form. Two discrete $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors and an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ voltage regulator are
active components.

Circuit operation

Assume for the moment that the circuit is already running and that we are looking a the start of one timing pulse. One of the control outputs of the 4017 will be 'high', thereby connecting the positive supply to the appropriate control poteniometer
(The other outputs of the 4017 will be 'low'). The slider of the selected control will connect the control voltage, via its isolating diode, to one side of the comparator Trs. The comparator is comprised of Tr_{5}, Tr_{4} and a constant current source switching between Tr_{5} and Tr_{4}.

At this point, Tr_{5} will turn on and, in turn, will cause Tr_{7} to conduct, raising th top of R_{7} to supply potential. (This is in later.) At the same time, C_{1} begins to charge in a linear fashion from curren supplied by the constant current generato Tr; ; the rate of charge is governed by the
value of the current set by $\mathrm{Vr}_{1}, \mathrm{D}_{1}, \mathrm{D}_{2}$ and

Fig. 2. Author's transmitter and modulator 2. Aurhor's transmitter and mo

R. The voltage across C_{1} rises and this is \mathbf{R}_{1}. The voltage across C_{1} rises and this is
applied to the other side of the comparator Tr_{4}.
When the voltage on Tr_{4} base just exceeds that on Tr_{5} base, Tr_{4} turns on, caus ing its emitter potential to rise and pull all
the current from Tr_{3}. This, in turn, cause Tr_{5} to cut off. With Tr_{5} off, Tr_{7} ceases to conduct and the potential at the top of R falls sharply towards ground, producing sharp negative trigger pulse via C_{2} to pin
of the 555 . The 555 now begins its timin of the 555 . The 55 now begins its timin cycle, the length of which is governed by
\mathbf{R}_{10} and \mathbf{C}_{4}. As soon as the 555 is started pin 3 goes 'high'. This positive step is passed to the 4017 to advance its output to
the next control potentiometer and the the next control potentiometer and the same positive rise is passed to Tr_{1}, which
conducts and causes C_{1} to discharge. (The function of D_{3} and D_{4} will be discussed later.) By the time the 555 has completed its timing cycle (the i.p.p.) the 4017 ha settled dow and presented the compara ready for its next charge.
All the circuit readjustments therefore are completed during the i.p.p Furthermore, once the 555 has been trig gered, it will ignore any other changes on its trigger pin unituits timing cycle in com
plete. The circuit changes during the i.p.p. therefore will not affect the i.p.p. In addition, since the modulator output is taken from the 555 , neither the timing no i.p.p. pulses will be affected by the outpu At the end of the i.p.p., pin 3 of the 555 goes 'low' and Tr_{1} ceases to conduct, re moving the discharge path from $\mathrm{C}_{1} . \mathrm{Tr}_{4}$ has already ceased conduction (when C on to prepare the next trigger pulse. The cycle now repeats as before, but with a new control potential applied to Tr .
The modulating output consists therefore of i.p.ps, separated by of pemparator timing cycles. This is 'negative' modulation and can be used as such or converted to positive modulation by a further transistor in the transmitter. Pulse limits. Considering Tr ${ }_{3}$, we see that its emitter potential 600 mV . If the bas potential of Tr_{5} is less than 1200 mV , its emitter potential will be 600 mV and it will be unable to turn on. Capacitor C_{1} will
charge up to supply potential Tr_{4} will charge up to supply potential, Tr_{4} will remain hard on and circuit operation wil
cease. Tr_{4} emitter potential is now so hig that even if Tr_{5} potential is now increased it cannot turn on. To restore the circuit the supply voltage must be interrupted. This poses the question of how the cir this is reliable. It is fortunate that the 55 has a sort of 'deficiency' in that it alway produces an output pulse at switch on irrespective of the condition of the trigge pin. This, in effect, gives an i.p.p. irres circuit. So, providing the potential of the base of Tr_{5} is suitable, the circuit will function. Capacitor C_{8} is included to pro vide a reset pulse to the 4017 at switch on
to ensure that timing begins on output ' 0 '.

WIRELESS WORLD MARCH 1981

Without this, the 4017 occasionally tries to begin on another output and if this is not
committed (i.e. no control connected to it) the circuit will not function. The reset pin of the 4017 is strapped to the output following the last pulse. If the sync. pulse is connected to output ' ' then the channel numbers will correspond with the other 4017 pin numbers and output numbers do not correspond.
If the potential of Tr_{5} base is raised to near the supply level, its emitter potential ${ }_{\mathrm{C}_{1}}$ is sannot charge above the supply voltage C_{1} cannot charge above the supply voltage
less the saturation voltage on Tr_{6} (about 200 mV). If in this condition, however, the potential of Tr_{5} base is reduced, Tr_{5} will turn off, causing Tr_{7} to produce a trigger pulse, and the circuit will continue to func-
tion. The maximum pulse length therefore occurs when Tr_{5} base is near the supply potential and the minimum pulse occurs when Tr_{5} base is about 1200 mV
Control adjustment
The charge graph of C_{1} is shown on the graph as line A to D, the slope of which is determined by the value of charging current set by Vr_{1}
trips is set by the which the comparator trips is set by the control potentiometer
and, in commercial control units, this is limited to only about one fifth of the potentiometer range. Ploting the control range on the same graph shows that there potential that will produce the 1 to 2 ms range required. It was found that, in practice, using standard component values, this put Trs base potential very
close to the cut-off point mentioned lier. Also, since C_{1} began its charge fromvery close to ground, and the minimum trip voltage of Tr_{5} is 1200 mV , it was not possible to reduce the minimum pulse ength much below 1 ms .
This problem could be solved if the lope of the charge graph could be
preserved but the point from which it began could be raised. In any case, C_{1} can only discharge down to $\mathrm{V}_{\text {ce(sat) }}$ of Tr_{1}
(about 200 mV) so, if diodes D_{3} and D_{4} are (about 200 mV) so, if diodes D_{3} and D_{4} are
added the minimum point of discharge is now raised to $1400 \mathrm{mV}(600+200+200)$. This has two advantages: first it lifts the low control potential clear of the cut-off potential of Tr_{5} (and incidentally puts the control potentiometers about mid travel,
which should be the best part of the track) and secondly it allows Tr_{5} base potential to approach very closely the minimum potential of C_{1}, so that very short pulses can be produced. As before though, if Tr_{5} base potential drops below the minimum ion as was the case when it dropped below 1200 mV without D_{3} and D_{4} fitted. This will not occur, however, in normal opera-
tion because of the limited travel of the ontrol sticks. If full rotated travel of the needed wheel of a car, the 5 k control pot. can be replaced by a 1 k pot. with a fixed 1 k 8 resistor at each end. The addition of D_{3} and D_{4}, although slightly restricting the
full overall range, has put the required rane well clear of any difficulties
Sync. pulse
Some systems require a short sync. pulse of the order of 600 s and and this is simply
arranged by putting a potential divide arranged by putting a potential divider
across one of the outputs of the 4017 , thereby treating it as a normal pulse but of shorter duration (the addition of D_{3} and
D_{4} assists this facility). Most modern systems, however, need a long sync. puls of the order of 6 to 8 ms , which is well outside the normal control range. An alternative means must therefore be employed. The obvious answer in this case is to
alter the slope of the charging potential of C_{1} for this pulse alone. This is accomplished by adding Tr_{2}, which, when it receives its 'high' output from the 4017, turns on and adds R_{3} to the constant-current circuit. R_{3} brings the emitter potential
of T_{6} closer to its base potential and thus ${ }^{\circ} \mathrm{Tr}_{r_{6}}$ coser to its base potential and thus reduces extending the length of the sync. pulse. Adjust R_{3} to give the length of sync. pulse required: R_{8} and R_{12} provide the trip
voltage for the pulse end

Setting up
The unit was designed to work from a 10 volt NiCad battery and, to ensure stability over the duration of the discharge, the supply was regulated down to about 8 volts by Tr.
Again,
At is essente voltage is not too critical, but applied directly to the itable because it is NiCad cells have a fairly steady voltage during discharge, but if ordinary dry cells are used than a more elaborate regulating
circuit ought to be used ircuir ought to be used. an oscilloscope. It does not need to be too an olaborilloscope. but it should have a trigger facil-
it ity because the waveform is not symmetrical. To make things easy, the best way to sticks and leave out the sync. pulse for the moment. It will be necessary to strap the 4017 to reset on the fourth step (i.e. output 3 , since it counts $0-1-2-3$). The position of

Fig. 3. Addition of diodes D_{3} and D_{4} sets
comparator range clear of difficiulties. been in use fircuits described hav my sons and no failure has oc curred. Although in recent times some dedicated i.cs have ap peared, which offer a similar facility, these have usually only 6 or 7
channels, are available only from channels, are available only from
selected sources and are fairly ex pensive. All the components described in this circuit are readily available and cheap. It would be possible, by modification of the
4017 end of the circuit, to control more than 9 channels: however the time between successive pulses on any one channel be comes longer as the number of channels increases. This make the servos slower to respond and
causes jitter unless the associated causes jitter unless the associated
decoder and driver circuits are carefully designed.
each control potentiometer with respect to is stick, and the setting of Vr_{1}, are then adjusted alternately to give the required duration and variation. It is surprising how
much variation in linearity there is between potentiometers; however, the ex pense of special units is not justified for the degree of improvement that would be ob tained. During this process it will be necessary to trigger the 'scope from the top
of each potentiometer in turn. Check, at this stage, that the variation of one channel does not affect the others. If C_{i} is subject to excessive retentivity this will show up as the variation of one channel by the preceding one but not the across C_{1} is not stable when Tr_{1} removes its discharge path. If all is operating correctly, there should be no noticeable interaction between channels even when one of these has
screen. screen.
The
pulse into the is to connect the sync, pulse into the circuit. Trigger the 'scope
from the 4017 sync. pulse output and adjust the pulse length as appropriate. If a scope is not readily available then the cir Vr_{1} to 4.75 k and all the control potentiometers to about half way. This is a useful of each potentiometer in turn, succeeding one (this is because the voltage across C_{1} is not stable when Tr_{1} removes its discharge path. If all is operating cornext iob is to connect the sync. 'scope is not readily available then the cir-

$\left(\pi_{1}+D_{3}+D_{4}\right)$

 -

method when the modulator is incorporated into existing equipment; the con-
trols can then be adjusted to match the existing servo mechanism.
A simple transmitter following standard practice is shown in the diagram. The transmitter can be built on a printed circuit board 10.125 by 6.5 cm .

References

1. 'Proportional Radio Control System' D 1. 'Proportional Radio Control System' D. J. Micron Ractio Control, 31 Hayworth Road, Sandiacre, Nottingham.
2. Ambit International, 200 North Service Road, Brentwood, Essex.

Components			
Resistors			
	2k7		470
2	6k8		4k7
3	68k		10 k
4	10k		1 k 5
5	4 k 7		150
	2k2		100
7	2k7		1k
8	1 k		
9	47k		100k
	18k		10 k preset
Capacitors			
1 100n polycarbonate.			
10 n			
533μ			
${ }^{6}$ 7 10 n			
7 10n			
8 10n			
10 n			
$\begin{array}{ll}10 & 10 n \\ 11\end{array}$			
12 10n			
13 100n			
14 2p2			
$\begin{array}{lll}15 & 15 \mathrm{p} \\ \\ 16 & 1000\end{array}$			
T1 60p trimmer			
T2 60ptrimmer			

Inductors

$\mathrm{L}_{1}, \mathrm{~L}_{2}$ 113CNF2K209A (TOKO)
with screening ca
$\mathrm{L}_{3} 33 \mu \mathrm{H}$ choke
$\mathrm{L}_{4} 12 \mathrm{t}$. 16 s.w.g. enamel, close-wound on 3/8dia. former
L_{5} V.h.f. choke. (R.S. Components or L_{5} V.h.f.f. choke. (R.S. Components or
Doram). Doram)
l.cs
1 CA30

2 NE555
3 CD4017 Ambit

Miscellaneous

Miscellaneous
Stick assemblies, aerial and socket can
be obtained from Micran. (Assemblies be obtained from Micron. (Assemblies
with 0.25in spindles are easier to adjust than miniature types).

Board layout for modulator and transmitter. Dimensions are $10.125 \times 6.5 \mathrm{~cm}$.

The author
Mr Hornsby started work with Post
Office Telecommunications (now British Office Telecommunications (now British
Telecom) at the age of sixteen, in 1952 Telecom) at the age of sixteen, in 1952
Following a two-year period as a National Following a two-year period as a National
Service radio mechanic, he returned to the Service eradio mechanic, he returned to the
Post Office, and eventually took a post as lecturer at the Post Office Training College
at Stone, in Staffordshire. Since 1968, Mr at Stone, in Staffordshire. Since 1968 , Mr
Hornsby has been involved in exchange planning in Sheffield and Nottingham (where he was head of the division) and is
now working on network planning in now working on network planning in
Leeds. He is married, with three children and says that his spare-time activity is
"pure" electronics, where, he thinks, to travel is more interesting than to arrive.

Current dumping analysis

Class B amplifiers without crossover distortion
by H. S. Malvar, M.Sc. University of Brasilia

The current dumping technique, as presented by P. J. Walker ${ }^{1}$, is a very elegant
solution to the problem of reducing the solution to the problem of reducing the crossover distortion in class B audio power amplifiers, because it eliminates the re-
quirement of a quiescent current on the output transistors, and the thermal problems associated with biasing. However, the amount of controversy ${ }^{-8}$ that followed Mr Walker's article denotes that the current dumping principle has not received a com-
plete treatment. The purpose of this work is to show, by means of a more complete analysis, that current dumping does reduce the crossover distortion more than conventional feedback but it is not able to totally cancel this distortion on the output
stage, even with a "theoretically perfect balance" or infinite feedback factor.
In Fig. 1, the general arrangement of the current dumping technique, the class A amplifier has a finite gain A, and it is not require A to be infinite. This configuration is general in the sense that all the current dumping circuits are possible realizations of it. The flow-graph of this configuration is presented in Fig. 2, and helps to forward are employed.
The two basic equations for the amplifier in Fig. 1 are

$$
\begin{aligned}
& V_{1}=A\left(V_{\mathrm{s}}-k V_{2}\right), \\
& \frac{V_{0}}{R_{\mathrm{L}}}=\frac{V_{1}-V_{0}}{R_{3}}+\frac{V_{2}-V_{0}}{R_{4}} \Rightarrow \\
& \frac{V_{0}}{R_{\mathrm{p}}}=\frac{V_{1}}{R_{3}}+\frac{V_{2}}{R_{4}}
\end{aligned}
$$

where $R_{\mathrm{p}}=R_{\mathrm{L}} / / R_{3} / / R_{4}$. These equations annot be solved for V_{o} / V_{s} unless a thir values for R_{3} and R_{4} are assumed. The action of the dumper gives this equation. is transference from V_{1} to V_{2} can b written as

$$
V_{2}=B V_{1}
$$

where B can be a highly non-linear factor in which are present crossover effects. With this relation equations 1 and 2 be come
$V_{1}=A\left(V_{\mathrm{s}}-k B V_{1}\right) \Rightarrow V_{1}=\frac{A}{1+k A B} \cdot V_{\mathrm{s}} \quad 3$
$\frac{V_{0}}{R_{\mathrm{p}}}=\frac{V_{1}}{R_{3}}+\frac{B V_{1}}{R_{4}} \Rightarrow V_{0}=\frac{R_{\mathrm{p}}}{R_{3}}\left[1+\frac{R_{3}}{R_{4}} \cdot B\right] V_{1}$
which, combined, finally lead to
$\frac{V_{0}}{V_{\mathrm{s}}}=\frac{R_{\mathrm{p}}}{R_{3}} \cdot \frac{A}{1+k A B} \cdot\left[1+\frac{R_{3}}{R_{4}} \cdot B\right] \quad 5$ $\begin{array}{ll}V_{\mathrm{s}} & R_{3} \\ \text { which is the desired relation between input }\end{array}$ and output. The heart of current dumping is to make the denominator of the second factor equal
attained if

$$
\frac{R_{3}}{R_{4}}=k A
$$

Making this substitution in equa
term $1+k A B$ is cancelled, and

$$
\frac{V_{0}}{V_{\mathrm{s}}}=\frac{R_{\mathrm{p}}}{R_{3}} \cdot A
$$

This result is the reason for all the excitement that has involved the people that worked on current dumping, because it pend on the dumper transfer characterisic! This is highly impressive, because a ook to Fig. 1 reveals that if $R_{3} \ll R_{4}$ the dumper will be the main source of power othe load when it is on (i.e. at mediumgain B is not present in equation 7, its crossover distortion will not appear at the

output voltage. (Remember that A is the gain of a class A amplifier, and hence free from crossover effects.)
The results of equations 6 and 7 were already known ${ }^{1,3,5,5,7}$ in different forms but with the same meaning; that was well
defined in an assertion by Mr Walker${ }^{4}$. "... there is a theoretically accessible state where the output stage distortion will cancel to zero, without calling upon infiite loop gain. .." Is this really true? Can one get the power of an amplifier (in this
case, the dumper) without getting its case, the dumper In fact, the situation is not so good as it may appear at first sight. A very important point was missed out of the analysis so far, and it was also missed from previous
analyses of current dumping ${ }^{1,3,5,6,7,7}$ the distortion of the class A amplifier. This ow-power amplifier must have a very low distortion level, because its distortion will appear at the output, which is clear from equation 7. Because it operates in class A, achieve, and this problem was left out. However, if the gain A is distorted, even
by a small amount, the balance condition of equation 6 will not hold for all signal
levels, and the term $1+k A B$ in equation 5 will not be perfectly cancelled. To clarify the situation, the distortion of both amplifiers must be considered in the
analysis. In fact, if one is looking for a analysis. In fact, if one is looking for a
distortion reducing scheme, all the distortion sources must be taken into account. A simple way to introduce these distortions is to write the gain of the low-power amplifier as $A\left(1+D_{\mathrm{A}}\right)$, and that of the dumper as $B\left(1+D_{\mathrm{B}}\right)$, where A and B are fixed con-
stants and D_{A} and D_{B} are random variables with unknown distributions that represent the distortion of the class A amplifier and the crossover distortion of the dumper, respectively.
Hence, eq
r 5 becom
$\frac{V_{0}}{V_{s}}=\frac{R_{\mathrm{p}}}{R_{3}} \cdot \frac{A\left(1+D_{\mathrm{A}}\right)}{1+k A B\left(1+D_{\mathrm{A}}\right)\left(1+D_{\mathrm{B}}\right)}$

$$
\left[1+\frac{R_{3}}{R_{4}} B\left(1+D_{B}\right)\right]
$$

From this it is clear that there are no finite values for A and R_{3} / R_{4} that can cancel the effects of D_{B} on $V_{\mathrm{V}} V_{\mathrm{S}}$ (remember that
$R_{3} / R_{4}=k A\left(1+D_{\mathrm{A}}\right)$ cannot be written, because a random variable cannot be always equal to a constant). An interesting result is obtained if the loop gain is made infinite, .e. if $A \rightarrow \infty$. It is easy to see, from equation 8, that

$$
\begin{array}{r}
\lim _{A \rightarrow \infty} \rightarrow \frac{V_{\mathrm{o}}}{V_{\mathrm{s}}}=\frac{R_{\mathrm{p}}}{R_{3}} \cdot \frac{1}{k B\left(1+D_{\mathrm{B}}\right)} . \\
{\left[1+\frac{\left.R_{3} B\left(1+D_{\mathrm{B}}\right)\right]}{R_{4}} .\right.} \\
=\frac{R_{\mathrm{p}}}{k R_{4}}\left[1+\frac{R_{4}}{R_{3}} \frac{1}{B\left(1+D_{\mathrm{B}}\right)}\right]
\end{array}
$$

$=(-1)^{n+1} n!\left[k A B\left(1+D_{B}\right)\right]^{n+1}$, $\left[1+k A B\left(1+D_{\mathrm{A}}\right)\left(1+D_{\mathrm{B}}\right)\right]^{n+}$

$$
\begin{align*}
& \text { the final result is } \tag{A}\\
& \begin{aligned}
& \frac{V_{\mathrm{o}}}{V_{\mathrm{s}}}= A \frac{R_{\mathrm{p}}}{R_{\mathrm{B}}}\left[\begin{array}{l}
1+\frac{R_{3}}{R_{4}} B\left(1+D_{\mathrm{B}}\right) \\
\\
-h^{2} n D_{\mathrm{A}}^{2}+h^{3} n^{2} D_{\mathrm{A}}^{3}-\cdots\left(1+D_{\mathrm{B}}-\cdots\right)
\end{array}\right] \\
& \text { where } h=\frac{1}{1+k A B\left(1+D_{\mathrm{B}}\right)} \\
& \text { and } n=\frac{k A B\left(1+D_{\mathrm{B}}\right)}{1+k A B\left(1+D_{\mathrm{B}}\right)} .
\end{aligned} \tag{10}
\end{align*}
$$

If the balance condition 6 is satisfied, a simplification can be made in equation 10 (and this is the reason for the minimum experimentally ${ }^{5,8}$

$$
\begin{aligned}
& \frac{V_{\mathrm{o}}}{V_{\mathrm{s}}}=A \frac{R_{\mathrm{p}}}{R_{3}}\left(1+h D_{\mathrm{A}}\right. \\
& -h^{2} n D_{\mathrm{A}}^{2}+h^{3} n^{2} D_{\mathrm{A}}^{3}-\ldots
\end{aligned}
$$

which shows that current dumping gener ates high-order distortion, as does conven tional feedback.
At this point, it is useful to separate the analysis in two cases, corresponding to the
off and on conditions of the dumper Dumper off. This condition corresponds to $B\left(1+D_{\mathrm{B}}\right)=0$, which implies $h=1$ and $n=0$ Thus equation 11 becomes

$$
\frac{V_{0}}{V_{\mathrm{s}}}=A \frac{R_{\mathrm{P}}}{R_{3}}\left(1+D_{\mathrm{A}}\right) .
$$

So, when the output power transistors are off the transmission from V_{1} to V_{2} is
nulled, which breaks the feedback loop nulled, which breaks the feedback loop. by the class A amplifier only, with no
feedback, the distortion factor of V_{o} / V_{s} feedback, the distortion factor of $V_{\mathrm{o}} V_{\mathrm{s}}$
must be D_{A}, as stated in equation 12 . must be D_{A}, as stated in equation 12 .
Dumper on. When the dumper is on, i.e. Dumper on. When the dumper is on, i.e.
one of the output transistors conducting, it has little distortion, because it is acting as an emitter-follower, which is implied in $\left|D_{\mathrm{B}}\right|<1$. As $k A B>1$ (which follows from the fact that R_{3} must be much greater than
R_{4}, the balance condition is $R_{3}=k A R_{4}$ and R_{4}, the balance condition is $R_{3}=k A R_{4}$ and $B \approx 1$), $h \ll 1$ and $n \approx 1$. Hence the series of equation 11 can be truncated to the first
power term with little error, and $1+k A B\left(1+D_{B}\right)$ can be replaced by $k A B\left(1+D_{\mathrm{B}}\right)$.
These cons.
considerations lead to

$$
\frac{V_{0}}{V_{\mathrm{s}}} \approx A \frac{R_{\mathrm{p}}}{R_{3}}\left[1+\frac{D_{\mathrm{A}}}{k A B\left(1+D_{\mathrm{B}}\right)}\right]
$$

As $\frac{1}{1+D_{\mathrm{B}}}=1-D_{\mathrm{B}}+D_{\mathrm{B}}^{2}-D_{\mathrm{B}}^{3}+\ldots \approx 1-D_{\mathrm{B}}$
for $\left|D_{\mathrm{B}}\right| \ll 1$, it follows that
$\frac{V_{\mathrm{o}}}{V_{\mathrm{s}}}=A \frac{R_{\mathrm{p}}}{R_{3}}\left[1+\frac{D_{\mathrm{A}}}{k A B}-\frac{D_{\mathrm{A}} D_{\mathrm{B}}}{k A B}\right] \cdot 13$ So the output has two main distortion the class A amplifier, which is D_{A} reduced by $k A B$ (this was expected because D_{A} is generated within a feedback loop with loop gain $k A B)$, and the other due to the two distortions,

$$
D_{\mathrm{A}} \frac{D_{\mathrm{B}}}{k A B}
$$

With $\left|D_{\mathrm{A}}\right|<1$ the effect of the distortion
D_{B} is reduced by an am D_{B} is reduced by an amount greater than
the feedback loop gain $k A B$. Therefore, the feedback loop gain $k A B$. Therefore,
the current dumping technique can reduce the effects of the crossover distortion more' than conventional feedback, given the camnot be total anyway. Hence the current dumping allows the design of a power amplifier with output transistors in true class \mathbf{B}, avoiding the
well-known thermal problems in conven-well-known thermal problems in conven-
tional AB output stages. Further, it is also tional AB output stages. Further, it is also
correct to say that the performance of a current dumping power amplifier is dictated mainly by two factors: the linearity of he low power class A amplifier (see equaion 13) and the precision of the balance. the output impedance of the amplifier A, and the input and output impedances of the dumper, the last two being highly dependent on whether the dumper is on or off. The variation in the output impedance
of the dumper can be accommodated by of the dumper can be accommodated by
the distortion factor D_{B}, and then does not affect the results. But its input impedance will affect the term D_{A}, as the amplifier A cannot have zero output impedance. Therefore the transistors of the dumper
must have very high current gains, to minimize the effects of the loading of the linear class A amplifier by a non-linear load. In practice, these transistors must be Darlington pairs or triplets.
From a practical viewpoint, the balance
condition is not too difficult to achieve if the class A amplifier has its gain stabilized by local feedback ${ }^{1,3,7}$. Even if this condition is not satisfied, a balance can be obtained by adjusting k^{5} or the resistors R_{3} or
R_{4}. As the gain A must have some kind of R_{4}. As the gain A must have some kind of
compensation in frequency due to the feedback loop around it, it seems that the equation 6 will not hold for all frequencies. However, if the compensation is made by a single pole in A, the resistor R_{4} can be
replaced by a series connection of an inductance and a resistor, in order to create a zero that can cancel the pole ${ }^{1,8}$. Finally, it seems that the current dumping technique is "the state of the art""
for reducing to very low levels the crossfor reducing to very low levels the cross-
over distortion (see, for instance, the results of the evaluation of a power amplifier that uses current dumping ${ }^{8}$), thus allowing the construction of high-fidelity amplifiers in true class \mathbf{B}.

References

1. P. J. Walker, Current dumping audio am-
plifiers, Wireless World, December 1975, pp. 1. P. J. Walker, Current dumping audio am-
plifiers, Wireless World, December 1975, pp.
$500-2$. 560-2.
2. Letters to the editor, Wireless World, April
3. 2. Letters to the editor, Wreless Worla,
1976, pp. 54-5.
1. Letters to the editor, Wireless World, July
1976, $60-2$. 1976, pep. $60-2$.
2. Leters to the editor, Wireless World, No4. Letters to the editor, Wireless Worla, No-
vember 1976, pp. 52-3.
3. Leters to the editor, Wireless World, April 5. Letters to the editor, Wireless World, April
1977, p. 76. 1977, p. 76 .
4. Letters to the editor, Wireless World, June 1977, p. 49 ,
5. J. Vanderkooy and S. P. Lipshitz, Current dumping - does it realy
World, June 1978, pp. $38-40$
6. J. Vanderkooy and S. P. Lipshitz, Current dumping - does it really work?, Wireles

Unified circuit theory

Millman's theorem does not seem to be widely known, yet most of the usual circuit theorems stem from it
by E. H. Pollard*

Millman's theorem deserves to be better known than it is; not only do all the usual circuit theorems stem from it as corollaries but it is extremely useful in its own right, often saving air amount of work. It certainly given.
s disaster but a flick of the switch away in he bistable circuit of Fig. 1? True, the values beside the resistor symbols are rather unusual in an otherwise conven
tional circuit. But rest assured the circuit is practicable, and the transistors safe. Ap pending conductance values to resisto symbols might be considered to be an un ortunate peccadillo, but is not conduc tance as much an intrinsic property of an intrinsic property of a conductor? Cer ainly it is not at all uncommon to se
esistance values appended to conductors.
Whatever the circuit may lack initially
in clarity due to an unexplained ambiguity
there is no shortcoming in logic. Un
doubtedly it would have been helpful if the
units were mentioned. In this case it is the
recently introduced siemens, abbreviate to S .
As well as being clarified by the append give their units, the conductances coul have been more readily recognized if they
had been allotted their own symbol. A his article is largely own symbol. A a ancle is largely concerned wis elationship to electric theory it is helpful ff they are adequately differentiated from resistance and impedance, their respective reciprocals, or duals ${ }^{1}$, by this means any years ago Wireless World printed which is not without relevance today. As shown in Fig. 2, the shorthand symbo given then for a resistor will be used to enote an admittor or admittance. Th tters R, G, Z, and Y will be used as usual signify resistance, conductance, im It is common practice to keep conduc ance and admittance in reserve, so to speak, and swing them into action whe ne is faced with an awkward array o why one should not keep conductance in the forefront for serially arranged conduc tors, just as one often sticks exclusively to resistance calculations for resistors connec ed in parallel. For example, Fig. 3(a) shows one cell of a battery, taken to be a
pure source of e.m.f. in series with its * Submitted postumously by K. J. Pollard.
internal resistance, whilst Fig. 3(b) show the same cell in series with its interna ductance, the terminals A and B defin eries are, of course, equivalent; and th ame load connected across the terminal A and B of either figure, whether it exactly the same current out of the battery Similar conditions apply, and the outcome is the same, in the circuit of Fig. 3(c) voltage generator - with its internal im pedance - in series. Then, as $z=1 / y$ whe is the internal admittance of the voltag senerator, Fig. 3(d) with its internal ad mittance in series is equivalent to Fig . 3(c) It can be shown by experiment, but no different cells say are connected in series as in Fig. 4(a), the resulting battery can b depicted simply as in Fig. 4(b), with the battery e.m.f.fs summed, and the separat iternal conductances replaced by a single sum of their individual reciprocals, a imple enough operation on a pocket calculator with a reciprocal key.
What happens if the cells are connected in parallel instead of series? Well, again certain conditions. The separate interna conductances can always be summed directly to give the total conductance; and hat as long as the voltages are the same o oltages are the same and conductances th same, the total e.m.f. will always be the mean e.m.f. of the individual cells. This still leaves one other possibility, where both the cell e.m.fs and internal conductances are unequal. In this case the answe e a Prince of Serendip to plump for the correct solution as a result of experimen here is no simple equivalent. The tota e.m.f. is $\left(V_{1} g_{1}+V_{2} g_{2}\right) /\left(g_{1}+g_{2}\right)$, which wil vidual cells. The different cases are show in Fig. 5.
It can be easily deduced, however, tha the expression for the total voltage of the ${ }^{\text {two cells shown in Fig. 5(d) is correct. }}$ of the cells were set in series with the e.m.fs which were defined to be perfect voltage sources; that is, the sources have infinite conductance.
5o make the matter more general Fig the internal conductances g_{1} and g_{2} ar
included respectively in the series conduc ances G_{1} and G_{2}. If V_{2} is reduced to zer voltage divider having across its termina a voltage $V_{\mathrm{AB} 1}=V_{1} G_{1} /\left(G_{1}+G_{2}\right)$. Similarly if the voltage source V_{1} is reduced to zer give the circuit of Fig. 6(c), the voltag $V_{\mathrm{AB} 2}=V_{2} G_{2} /\left(G_{1}+G_{2}\right)$. Adding these two voltages, which act in the same directio across terminals AB , gives the termin voltage as $V_{\mathrm{AB}}=\left(V_{1} G_{1}+V_{2} G_{2}\right) /\left(G_{1}+G_{2}\right)$.

Fig. 1. Practicable bistable or a disaster?

Fig. 2. Symbols used for resistor or conductor or conductance (c), admittor or admittance (d).

Fig. 3. Batteries of e.m.f. V in series with its conductance (b) internal conductance (b), and generators of e.m.f. V
with internal impedance (c), and internal with internal impedance (c), and interna)
admittance (d). (Batteries and generator
$V_{\mathrm{AB}}=\sum_{k=1}^{n} V_{\mathrm{k}} Y_{\mathrm{k}} / \sum_{k=1}^{n} Y_{\mathrm{k}}$
The proof is as follows. There are $n-1$ loops formed by the parallel arms. Let the currents in each of these loops, in accordance with Maxwell's cyclic-current rule be $I_{1}, I_{2}, I_{3}, \ldots I_{n-1}$, as shown. Note that in
each of the n arms , except the first and n th, there are two currents acting, the one shown on the left adding to the generator voltage by its action with the associated admiittance, and the one on the right
subtracing by a similar action from the generator voltage. The first and last branches will be acted on by only one current each, I_{1} and $I_{\mathrm{n}-1}$ respectively. As the voltage V_{AB} is the same wherever terminals A and B happen to be connected to their respective rails, hm 's law applied
to each of the arms will give the following equations for the resultant loop currents through the branches

$$
\begin{gathered}
I_{1}=\left(V_{1}-V_{\mathrm{AB}}\right) Y_{1} \\
I_{1}-I_{2}=\left(V_{\mathrm{AB}}-V_{2}\right) Y_{2} \\
I_{2}-I_{3}=\left(V_{\mathrm{AB}}-V_{3}\right) Y_{3}
\end{gathered}
$$

and generally
$I_{\mathrm{n}-2}-I_{\mathrm{n}-1}=\left(V_{\mathrm{AB}}-V_{\mathrm{n}}\right) Y_{\mathrm{n}-1}$
$I_{\mathrm{n}-1}=\left(V_{\mathrm{AB}}-V_{\mathrm{n}}\right) Y_{\mathrm{n}}$
By subtraction of the individual terms on each side $I_{1}-\left(I_{1}-I_{2}\right)-\left(I_{2}-I_{3}\right)-\ldots$
$\left.=\left(V_{1}-V_{\mathrm{AB}}\right) Y_{1}-\left(V_{\mathrm{AB}}-V_{2}\right) Y_{2}-\ldots . I_{\mathrm{n}-1}\right)-I_{\mathrm{n}-1}=0$.
i.e. $\left.V_{1} Y_{1}+V_{2} Y_{2}+V_{3} Y_{3}+\ldots \quad+Y_{\mathrm{n}}\right)=0$ $\quad+V_{\mathrm{n}} Y_{\mathrm{n}}-V_{\mathrm{AB}}\left(Y_{1}+Y_{2}+\ldots+Y_{\mathrm{n}}\right)=0$
$V_{\mathrm{AB}}=\left(V_{1} Y_{1}+V_{2} Y_{2}+\ldots\right.$
$\left.+V_{\mathrm{n}} Y_{\mathrm{n}}\right) /\left(Y_{1}+Y_{2}+\ldots+Y_{\mathrm{n}}\right)$

$$
\mathrm{AB}_{\mathrm{AB}}=\sum_{k=1}^{n} V_{\mathrm{k}} Y_{\mathrm{k}} \mid \sum_{k=1}^{n} Y_{\mathrm{k}}
$$

source in any one of the branches implies that a generator of zero volts is in series with the admittance
in that branch. The term containing their product in the numerator is therefore zero and need not be present, although the admittance will appear in the denominator. For example, if all the generators except V_{1} in Fig. 7 are reduced to zero, the terminal voltage becomes

Fig. 6. How the rail voltage $V_{A B}$ is
calculated. Considering it as two simple voltage dividers each with a single voltage source, V_{1} gives rise to a rail voltage
$V_{\mathrm{AB}}=V_{1} G_{1} / /\left(G_{1}+G_{2}\right)$$V_{1}$ $V_{A B 1}=V_{1} G_{1} /\left(G_{1}+G_{2}\right)(b)$ and V_{2} gives rise
to a rail voltage $\left.V_{A B 2}=V_{2} G_{2} / G_{1}+G_{2}\right)(c)$. Total voltage $V_{\mathrm{AB}}=V_{\mathrm{AB} 1}+V_{\mathrm{AB} 2}$

WIRELESS WORLD MARCH 1981
V, V the common $V_{n}=V$
Fig. 8. In the compensation corollary,
admittance $Y_{\text {m }}$ of fig $\pm Y_{m}$ as in (a) chang. 7 is changed by Change in current through any arm is given

Fig. 9. Fig. 7 modified, illustrating
eciprocity corollary. The current following in Y_{m+1} is $V_{A B} Y_{m+1}$. Same current will flow
in Y_{m} if V_{m} is in series with Y_{m+1}

$$
V_{\mathrm{AB}}=V_{1} Y_{1} \mid \sum_{k=1}^{n} Y_{\mathrm{k}}
$$

Corollary 1. If $Y_{1}=Y_{2}=Y_{3}=\ldots=Y_{n}=Y$ say,

$$
\sum_{k=1}^{n} V_{\mathrm{k}} / n=\bar{V},
$$

where \bar{V} is the arithmetic mean of the generator voltages.
Corollary 2. If $V_{1}=V_{2}=V_{3}=\ldots=V_{\mathrm{n}}=V$ oltage; it is also the arithmetic mean of the generator voltages.
Corollary 3. The expression for Millman's heorem given in equation 1 can be expressed as
$\begin{aligned} V_{\mathrm{AB}}= & V_{1} Y_{1} / \Sigma Y+V_{2} Y_{2} / \Sigma Y+. \\ & +V_{\mathrm{n}} Y_{\mathrm{n}} / \Sigma Y\end{aligned}$
Each numerator on the right-hand side of his expression contains only the produ mittance associated with it, whilst eac denominator consists of the sum of all th dmittances. Therefore, if all the voltag surces except one in turn are reduced A and B then becomes consecutively $V_{\mathrm{AB}}=V_{1} Y_{1} / \Sigma Y, V_{\mathrm{AB} 2}+V_{2} Y_{2} / \Sigma Y$, etc., then $V_{\mathrm{AB}}=V_{\mathrm{AB} 1}+\mathrm{NAB} 2+V_{\mathrm{AB} 3}+\cdots+V_{\mathrm{ABn}}$ Suppose one wishes to find the total cur rent through ine mharm where the admit Well, V_{m} is reduced to zero for the acquiring of all the voltages on the right-hand ide of equation 2, except for the one that used to obtain V_{ABm} when the current rent Y_{m} is $\left(V_{\mathrm{ABm}}-V_{\mathrm{m}}\right) Y_{\mathrm{m}}$. The tot
current through Y_{m} is therefore
$I_{\mathrm{m}}=V_{\mathrm{AB}} Y_{\mathrm{m}}+V_{\mathrm{AB2}} Y_{\mathrm{m}}+$
$+V_{\mathrm{AB}(\mathrm{m}-1)} \mathrm{A}_{\mathrm{m}} Y^{+} \ldots$
$+\left(V_{\mathrm{ABm}}-V_{\mathrm{m}}\right) Y_{\mathrm{m}}+$.
$=\left(\sum_{k=1}^{n} V_{A B k}-V_{\mathrm{m}}\right) Y_{\mathrm{m}}$
(3)

From equation 2, equation 3 can also be xpressed as $I_{\mathrm{m}}=\left(V_{\mathrm{AB}}-V_{\mathrm{m}}\right) Y_{\mathrm{m}}$, as would

Equations 2 and 3 express the principle
In a network containing two or more sources of electrical energy the voltage
across, or the current in, any branch may be found by setting in turn all sources except one to zero, and calculating the voltage or currents due to this single source, afterwards adding the results algebrai-

Corollary 4. Suppose it is desired to find how the current through a particular branch, say that containing V_{i}, and Y_{i}, is branch is altered branch is altered.
aining V_{j} and.Y_{j} is $I_{i}=\left(V_{A B}-V_{j}\right) Y_{j}$ Suppose now that one of the other admittances is changed by a small amount; say Y_{m} is changed to $Y_{\mathrm{m}}+\delta Y_{\mathrm{m}}$ causing V_{AB} to in the j th branch is

$$
I_{\mathrm{j}}^{\prime}=\left(V_{\mathrm{AB}}^{\prime}-V_{\mathrm{j}}\right) Y_{\mathrm{j}} .
$$

The change of current in the j th branch is The chan
$\left\{\begin{array}{c}I_{\mathrm{i}}-I_{\mathrm{j}}^{\prime}=\left(V_{\mathrm{AB}}-V_{\mathrm{AB}}^{\prime}\right) Y_{\mathrm{j}}= \\ \frac{\sum_{k=1}^{n} V_{\mathrm{k}} Y_{\mathrm{k}}}{m-1}-\frac{\sum_{k=1}^{m} V_{\mathrm{k}} Y_{\mathrm{k}}+V_{\mathrm{m}}\left(Y \pm \delta Y_{\mathrm{m}}\right)+\sum_{k=\mathrm{m}+1}^{n} V_{\mathrm{k}} Y_{\mathrm{k}}}{n} \\ \sum_{k=1}^{n} V_{\mathrm{k}}\end{array} \sum_{k=1}^{m-1} V_{\mathrm{k}}+Y_{\mathrm{m}} \pm \delta Y_{\mathrm{m}}+\sum_{k=m+1}^{n} Y_{\mathrm{k}}{ }_{k}, Y_{\mathrm{l}}\right.$
which after a little manipulation becomes

$$
I_{\mathrm{i}}-I_{\mathrm{j}}=\frac{\left(V_{\mathrm{AB}}-V_{\mathrm{m}}\right)\left(\pm \delta Y_{\mathrm{m}}\right)}{\sum Y \pm \delta Y_{\mathrm{m}}}
$$

There may not be an independent voltage cting in the branch containing \mathbf{Y} which case this last expression reduces to $r_{j}-I_{\mathrm{j}}^{\prime}=V_{\mathrm{AB}}\left(\pm \delta Y_{\mathrm{m}}\right) /\left(\Sigma Y \pm \delta Y_{\mathrm{m}}\right)$
So, if the admittance Y of a branch of network such as that represented by Fig. current flowing in another branch of the ciruit due to the alteration would be 'that which ould arise if the original terminal voltage were a generator voltage acting in conjunction with any voltage generator previously presen admittance δY, this branch being in parallel
with all the pre-existent branches which have had their voltage generators replaced by infinite admittances. See Fig. 8. You may recognize this as a statement of the compenation theorem.

Corollary 5. Consider Fig. 9, a modified version of Fig. 7, where all the voltages are reduced to zero except V_{m}. The voltage
across the rails is

$$
V_{\mathrm{AB}}=V_{\mathrm{m}} Y_{\mathrm{m}} / \Sigma Y
$$

The current through admittance Y_{m+1} is

$$
I_{\mathrm{m}+1}=V_{\mathrm{AB}} Y_{\mathrm{m}+1}=V_{\mathrm{m}} Y_{\mathrm{m}} Y_{\mathrm{m}+1} / \Sigma Y
$$

If V_{m} is now transferred to the $(m+1)$ th branch in series with $Y_{\mathrm{m}+1}$ the new voltage

$$
V_{\mathrm{AB}}=V_{\mathrm{m}} Y_{\mathrm{m}}+1 / \Sigma Y
$$

and the resultant current through Y_{m} is

$$
\begin{gather*}
I_{\mathrm{m}}=V_{\mathrm{AB}} Y_{\mathrm{m}}=V_{\mathrm{m}} Y_{\mathrm{m}} Y_{\dot{\mathrm{m}+1}} / \Sigma Y . \tag{5}\\
\therefore I_{\mathrm{m}+1}=I_{\mathrm{m}} .
\end{gather*}
$$

Hence the current produced in any branch $(m+1)$ th of the nerwork by an e.m.f. V_{m} in
any other branch (m th) equals the current in the other branch (m th) which would arise if he e.m.f. V_{m}, was transferred to the first banch, $(m+1)$ th. This result is usually as the reciprocity theorem

Corollary 6. The rail voltage in Fig. 7 was ound by Millman to be

$$
V_{\mathrm{AB}}=\sum_{k=1}^{n} V_{\mathrm{k}} Y_{\mathrm{k}} \mid \sum_{k=1}^{n} Y_{\mathrm{k}}
$$

uppose an $(n+1)$ th parallel branch consis ing of an admittance $Y_{\mathrm{n}+1}$ is added acros becomes

$$
V^{\prime}{ }_{A B}=\sum_{k=1}^{n} V_{\mathrm{k}} Y_{\mathrm{k}} \sum_{k=1}^{n+1}
$$

hence $V_{A B}^{\prime} V_{A B}=\sum_{k=1}^{n} V_{k} \mid \sum_{k+1}^{n+1}$
which is the same as

$$
V_{A B}^{\prime}=\sum_{k=1}^{n} Y_{k} \mid\left(\sum_{k=1}^{n} Y_{k}+Y_{n+1}\right)
$$

Fig. 7, with its aded an the admittance $Y_{\mathrm{n}}+$ f Fig. 10(a)

Fig. 10.

If $V_{\mathrm{AB}}=V_{0}$, the voltage between term als A and B before the admittance $Y_{\mathrm{n}+1}$ was added, and the sum of the admittances $\sum Y_{\mathrm{k}}=Y_{0}$ while $Y_{\mathrm{n}+1}$ itself is denoted by Y ig. 10(a) can be redrawn as Fig. 10(b)

$$
V=V_{0} Y_{0} /\left(Y+Y_{0}\right)
$$

(7)
where $V=V^{\prime}{ }_{A B}$ is the new voltage acros, the terminals. Therefore, if a parallel admittance Y is added to a network, the voltage V across Y i the terminals were acting in series with an admittance equal to the sum of the original admittances, in parallel with the added ad minance.
From Fig. 10(b) and eqn $7 V_{0} Y_{0}$ is the current which would flow if the parallel
admittance Y were short-circuited. If this short-circuit current is denoted by I_{0} then $V=I_{0} Y+Y_{0}$
ession is know
This expression is known as the dual ${ }^{1}$ of hevenin's theorem, as it is usually ex

Corlary 7.
Corollary 7. The numerator $V_{\mathrm{AB}} \Sigma Y$ in equation 6 is the current that would flow as a consequence of a generator voltage V_{AB} mann circuit of Fig. 7 , when all the voltage sources are zeroed. Fig. 10(c) can therefore be drawn to show the terminal voltage $V^{\prime}{ }^{\text {AB }}$ derived from a current source generating a current I_{s}; and if the same changes in case of corollary 6 , the generalized circuit of Fig. 10(d) results. Clearly Figs 10(a) and (b) are equivalent to Figs 10(c) and (d) with respect to the added admittance Y : the current I_{y} through Y is V_{y} in both
cases or $I_{y}=V_{0} Y_{0} Y /\left(Y+Y_{0}\right)=I_{0} Y /\left(Y+Y_{0}\right)$. Therefore a Thevenin-equivalent circui may be converted into the constant-cur rent form shown. This is usually known as Norton's theorem, stated as
The circuit of Fig. 7, is identical to a circui the short-circuit current in parallel with an admittance equal to the sum of the individual admittances, the voltage across the terminals being the same. Corollaries 6 and 7 are sometimes known as the Helmholz equiva lent-source theorems.
All these corollarie
ciated as theorems - embracing th concept of impedance rather than admit tance - and proofs will be found in any good textbook on electrical theory, for
example, reference 3 . There is a wealth of articles on Thevenin's theorem alone to be found in previous issues of Wireless World ${ }^{4,5}$ and elsewhere

The question arises as to just how gen
eral are all the results derived from Mill man's theorem above. It would be hardl surprising for them to apply to the Mill man circuit of Fig. 7 as they would to any however, that any two-terminal active network reduces to a Millman circuit.

Appendix

ny two-term active circuit reduces to Millman circuit.
In an circuit containing admittances and voltage sources, any single voltage source or combina-
tion of such sources can be replaced completely or partially by another single pure voltag source or sources, provided any sources
dita dispensed with leave their internal admittances
behind. New sources retain the admittances of behind. New sources retain the admittances of
the superseded sources, whilst any new sources are placed in series with pre-existent source admittances or other admittances, so that with
regard to the placement of any pair of terminals, regard to the placement of any pair of terminals,
the admittance looking into, and the voltage across, those terminals are the same as before ny changes were made. I call this the principle of equivalence and
transferability of pure voltage sources, and it transferability of pure votrage sources, and it
self-evident. For the terminal voltage will al ways depend, according to the circuit configura ion, on definite fractions $m_{1}, m_{2} \ldots m_{\mathrm{n}}$ of th
voltage sources $V_{\mathrm{l}}, V_{2} \ldots V_{\mathrm{n}}$ such that the summation equals the terminal voltage. That is, erminal voltage is
$V=\sum_{i=1}^{n} m_{i} V_{i}$
But notice that it may not be at all easy in any particular circuit to see what those fractions are As a simple example of the principle consider same voltage V Each is equivalent, each has th same voltage $V_{\mathrm{AB}}=4 V$ across the terminals; an
each has the same admittance $Y_{\mathrm{AB}}=10 S$ looking into the terminals, that is with the voltage
sources short-circuited The internal admitane sources short-circuited. The internal admittance
of the original source, Fig. $A(a)$, is included in of the original source, Fig. A(a), is included in
the $2 S$ admitrance, and remains there the $2 S$ admittance, and remains there
throughout. A voltage source cannot be placed
in parallel with an admittance, say across $8 S$ in Fig. A(a), for Y_{AB} would then be infinite whe
this source was shorted out The figure show his source was shored out. The figures sho A second proposition is a theorem due to L. la Cour, which states: with respect to ony two pairs of accessible terminals any passive linear net
work may be replaced by a two-mesh or T-network, work may be replaced by a two-mesh or T-nervork,
and in general no more simple form can be found. Now consider a circuit, represented below,

sources to any degree of complexity (the branches shown may consist of either or a com-
bination of both). By the first principle state bination of both). By the first principle, stated can be replaced by one. Therefore, let all the voltage sources be transferred to the branch PQ prior to this branch being removed temporarily,
Fig. B (a), to leave the passive four-terminal net ig. $B(a)$, to leave the passive four-terminal net y the two pairs of terminals PQ and XY respe J. L. la Cour's theorem applied to the remain J. L. La Cour's theorem applied to the remain
ing network between the two ports results i ing network between the two ports results in
reduction to the T or star connection of admit tances shown in Fig. . (b). Re Ruruning the tempo
tarily detached branch PO to its rightul place arily detached branch $P Q$ to its rightful place, be input port terminals, and replacing the com-

The circuit of Fig. B(c) can be transformed to that of Fig. C(a), T or star to π or delta. Admit-
tance Y_{B} is clearly redundant as far as conditions at the output terminals X and Y are con
cerned; for its removal makes no difference Continued on page 76

Secondary breakdown oscillation

Non-destructive experiments with Zener diodes

Although secondary breakdown
exhibits a negative resistance
characteristic, its application has been limited by the destructive nature of the phenomenon. This article describes some investigations carrie diodes in oscillator circuits.
If the graph of collector current versus voltage for a transistor is considered be-
yond the normal working range, there ar two areas of interest as shown in Fig. 1 . The first, known as the primary breakdown region, is where a slight in crease in voltage causes a large increase in However, Zener diodes operate in this region and a special manufacturing proces insures their safe operation.
The secondary breakdown region is catastrophic and normally causes the des-
truction of a semiconductor in a simila way to the discharge through a dielectric. Although it is imperative that a semiconductor never operates at or near this point the area is interesung because it exnibit used to oscillate or amplify. For secondary breakdown experiments, Zener diodes are preferable to transistors because they al ready operate safely in the first region four mhe inspiratiod Z ner diocen found that glass-encased Zener diodes can a certain procedure is observed. All lowpower types seem suitable at every voltage above 12 V . Below 12 V it is increasingl difficut 8 V oblain correct operation, and that the phenomenon is due to avalanche breakdown and not the true Zener effect. For correct operation, certain permanent changes must be made in the junc or 18 V type 1 N 967 were used as a compro mise between ease of operation and the need to work with a low voltage. The diode is fed from a constant current generator,
see Fig. 2, and the current is slowly insee Fig. 2, and the current is slowly inup. voltage the potential drop across the junction starts to decrease and the temperature reaches about $200^{\circ} \mathrm{C}$. At this point the seems to insure a certain constancy in the modified devices, and the temperature coefficient changes from positive to negative. During the preparation period there

Fig. 3. (a) Test circuit to measure dynamic voltage and current, $F=18 \mathrm{kHz}$, (b)
Waveforms across 0.2Ω resistor, 3 V (top) Waveforms ac
and $p k$-to-pk.

Fig. 4. Audio oscillator with an efficiency of
10% at 1 kHz .
and a third oscillation region occurs, but operation is extremely difficult and sporadic: Once the junction has been
subjected to the higher current range it subjected to the higher current range it probably due to irreversible changes taking place at the higher temperature. However, the current has been increased until a voltage drop of only 1 V was present without destroying the junction. It should
be noted that with very high currents the be noted that with very high currents the
glass case starts to melt and physical breakdown can occur before junction breakdow
In most samples, when secondary oscillations were triggered, a change of state took place at a 3.3 ms interval. The junc-
tion oscillates at a certain frequency, then changes to another for the next 3.3 ms , followed by a state of self-modulation where the modulating signal is similar to duces a cycle with four different states Once steady operation is achieved, the 3.3 ms interval appears to be independent of temperature and current, but differs between samples. This behaviour has not

The Cosmic Ecosystem, by Alan Johnston gives one the impression of having been writte by a desperate man, frustrated because the
scientific establishment closes ranks at the sight of him. It contains many ideas which are quite
and likely to goad a 'rerspectable' scientist into a fit of the vapours, a reaction which, however often
the ideas are repeated, never seems to bring intelligible responses.
One of the notions put forward by Johnston is the one about gravitational repulsion, in which
the force of gravity is due to radiation pressure, two bodies screening each other from the pressure and being forced together. This is not a
new idea (Alex Jones came up with it a long time new idea (Alex Jones came up with it a long time
ago) but it has yet to receive any kind of considered reply, positive or negative. The author is similarly iconoclastic on the subbects of the Big
Bang, continuous creation and the red shift, and Bang, continuous creation and the red shift, and
Fig. 5. (a) High-frequency test circuit,
Current and temperature must be stable to
avoid frequency drift. (b) Waveforms, 3V
(top) and 10mV pk-to-pk.
been investigated further and cannot be Althous
Although it is unlikely that a standard
works. Since, however, there is little' 'basis one feels that such students will continue to be one feels that such suadenst.
unclear, at this level at least. At a more peripheral level of description, th ook is excellent. It begins with two chapters 0 on stereo and surround sound (called 'quad') which describe most of the systems known although there are no references later than 1973,
The rest of the book covers all the techniques ad equipment employed in a studio, fro icrophones to monitor loudspeakers, with chapters on audio control systems, tape and dis chapters on audio control systems, tape and disc
recording, signal processing and a section on digital techniques. The final chapter advises on the economics and technical aspects of estab lishing a low-cost recording studio.
¢16.45 by Van Nostrand Reinhold.

$\left.\begin{array}{l}0 \\ 0 \\ \square\end{array} \square\right) \square \Omega$

several other theories enstrined in scientific litany. One wishes Mr Johnston well and can
only hope that his shoulders are broad. The only hope that his shoulders are broad. The
Cosmic Ecosystem is published at $£ 7.95$ by Wiildwood House Ltd, 1 Prince of Wales Pass-
age, 117 Hampstead Road, London NW1 3EE.
Sound Recording, by John Eargle, is a text book of sound studio techniques, intended for
both technicians and arts students. The author points out in his preface that those students of sound recording who approach the subject from
a musical background often understand how to use studio equipment, but are unclear on how it

Zener diode will be used in the secondar breakdown region, further study might
result in some interesting devices.

Unified circuit theory
ther the voltage at the terminals, or the admit tance looking into the terminals. It may
therefore be removed to leave the Millman cirwit of Fig. C(b) which has a generallman cicuit of Fig. C(b) which has a generator of zero
voltage in one of its branches (but which by the first principle could easily be furnished with a more active generator).

continued from page 74

References

1. Duals. Wireless World 1952, vol. 58 pages 152-5
152-5. Millman's theorem, and parallel generato theorem, see Electric Circuit Theory by F. A Benson \& D. Harrison, Arnold 1959, page
and Useful network theorems, by J. Millman, Proc. IRE vol. 28, 1940 page 413 . C. Circuit Theory Analysis, by J. Mittleman
Haden 1964 and Iliff l965. Hayden 1964 and liffe 1965. . Wireless World, vol. 71 1965, , letters page 144.

The Professionals

VALVES.SEMICONDUCTORS \&COMPONENTS for:-

Communications, Displays, Radar. Computer
Audio etc.
Hall Electric Limited.
Electron House,
Gray Avenue. St. Mary Cray.
Telephone: Orpington 27099
Telex: 896141
MIN DEF APPROVAL 0529/053

In the Plasma Therm RF range of Generators, you will find all the features of reliability and innovation that make them absolutely essential for modern production lines and the high degree of sophistication necessary for automation. Somewhere in the range, you will find the right generator for you.
That's why Plasma Therm Generators are the automatic choice. * Robust construction - designed for production use * Will accept P.T. automatic power controller and voltage controller * Can be remotely situated

* Built in fault diagnostic system/spares readily available
* Designed for ease of maintenance
* Either rack or cabinet design

Plasma Therm are to Generators what Generators are to your peration - essential.

For more details on the technological advantages of the Plasma Therm range of generators, contact us anytime at the address below:

Plasma- Therme, ftd

6 Station Road, Penge SE20 7BQ. Tel: 01-778 6798 Telex: 8954441

(uyl|wis Sales and Service for: RF Generators and automatic matching networks and controllers, ICP's Plasma Etching and Deposition, End Point Detection, Vacuum Accessories and Energy Control. WW - 073 FOR FURTHER DETAILS

Colour, variety, price... a case for consideration.

Do you have a requirement for two-tone contain threaded inserts for component polystyrene cases? Consider the or PCB mounting, and quick, easy comprehensive BOCON range from access is possible by means of Nest Hyde. Prices of these cases have *BOSNAPS, a unique feature supplied board on standard colour options and they are available in a variety of colour schemes and sizes, a selection of which are suitable for Eurocards The lower sections of these housings
y by West Hyde

WEST HYDE
West Hyde Developments Limited
Unit 9 p park Street Industrial
Aylesbury, Bucks. HP20 115T.
Telephone: (0296) $20441 / 5$. Telex: 83570 W HYDE G.
WW - O78 FOR FURTHER DETAIIS

Wind speed and direction meter

2 - Display circuitry and testing

pulses increment the counters. This pulse train, which contains from 0 to 360 pulses, therefore causes the counter output to go from 180 to 0 to 180 . The port/starboard information is given by the counters counting either up or down at the end of
the pulse train. The middle and high-order decades and the count-up-or-down information is latched with two 4042s to drive the 'analogue' direction display, which is described later
To keep the cockpit uncluttered and to minimize power consumption, it was decided to use a single digital display and switch it between direction and speed. To facilitate this switching, the direction counter outputs drive a display bus via two
4503 tri-state buffers 4503 tri-state buffers.
quite straightforward. The CLOCK signal is gated by the LM 556 timer into three decades of b.c.d. counter, whose outputs drive tri-state buffers. A 4042 latch, a 74 C 85 digital comparator and an RS flip
flop are used to generate the SLOW/FAST flop are used to generate the SLOW/FAST
signal required by the clock-frequency multiplying phase-lock loop in Fig. 8 of part 1 of the article.
The prototype used 7 -segment 1. .e.d.
displays, as shown in displays, as shown in Fig 11, because of their low cost. Leading-zero blanking logic
was included to conserve power and to make the display more easily readable. Red and green 1.e.ds, which only operate in the direction mode, are used to indicate port or starboard. The displays and the
segment dropping resistors (\mathbb{R}) will depend on the size and brightness required.

Fig. 11. Digital display circuit.

WIRELESS WORLD MARCH 1981

If reasonably priced liquid-crystal displays were available their use would be preferred
because of their lower power consumption and superior visibility under varying lighting conditions. If 1.c.d. displays were used, the drivers would have to be changed from 4511 s to 4543 s and a display oscill tor added.
Fig. 12. The LATCH ENABLE signal is derived from the direction circuit and th SPEED and SPEED CLK signals from the speed circuit. The 556 timer is used to disable the display updating so that the
reading is updated at a maximum rate of about 2 Hz . Without this update disabling, the direction update rate would vary directly with windspeed and at high speed the flickering of the display would mak reading difficult.

Analogue display. The analogue-type direction display discussed earlier is provided by a circle of 36 1.e.ds driven by the circuit shown in Fig. 13. The display digital display mode selected. If this display, and the digital direction display, have port and starboard interchanged this can be overcome in one of two ways. Either the anemometer cups can be
mounted the other way up to reverse their direction of rotation or the UP/DOWN and UP/DOWN inputs can be interchanged in Figs. 11 and 13.
Speed calibration
The wind-speed calibration can be carried out by comparison with an anemometer known accuracy or by mounting the unit on a long pole in front of a car. Failing this a fair estimate can be made based on the geometry of the anemometer rotor using
the information in Ref 3. This report sug gests that for a three-cup anemometer with the geometry typical of commercial units and a 36 -hole timing track, the clock calibration factor (K) should be given by $K=1032 / r$ hertz/knot
where r is the mean radius of the cups in mm . For the anemometer used with the prototype, this expression gave $K=23.2$,
whereas the measured value was 22.5 . The required period T of the speed clock in Fig. 10 is given by:

$$
=10 / K \text { seconds }
$$

Performance

The prototype instrument operated satis factorily over a speed range from 0.7 kno
to 99.9 knot, the higher speeds being simulated with an electric motor drive to the anemometer disc. Below 0.7 knot the speed indication continued to function but the phase-lock loop in the direction system lost lock. The maximum error of the direc-
tion indication was $+2^{\circ}$ with error function which exhibited one cycle for 360° direction change. This error was thought to be due to a slight eccentricity of the clock track. Any two or four cycle per

 II
 (10):

Literature received

Full catalogue of measuring instruments, systems and accessories by Rohde and Schwarz is obtainable from Aveley Electric Ltd, Roeis obtainable from Aveley Electric Ltd, Roe- buck Road, Chessington, Surrey KT9 1LP. WWW401

KEF have published two new KEFTOPICS, Volume e, No 1 Ideads wwith loudspeaker protec-
tion methods, describing the KEF S-Stop tion methods, describing the KEF S-Stop
system, and Vol. 4, No 2 is on crossover filter system, and Vol. 4, No 2 is on crossover filter
design. KEF. Electronics Ltd, Tovil, Maid-
stone, Kent.
Leaflet from Eraser International describes a Leaflet from Eraser international describes a
range of flameless heat guns for shrinking
tubing, drying paint trippoing etc. Available tubing, drying, paint stripping, etc. Available
from EI at Unit M, Portway Industrial
Wstate,

Catalogue of Bulgin components is now available, covering an extended range of hardware and now including displays and digital panel
meters. A. F. Bulgin and Co. Ltd, Bypass
Road, Barking, Essex IG11 OAZ. WW 404

Salford has produced a short catalogue to desSaiford has produced a short catalogue to des-
ribe the SEI range of measuring instruments, cribe the thos for the heating and ventilating
incluing thast, and also showing the new digital a panel
ind industry,
meters.
meter
Booklet with the self-explanatory title "Every-
hing you need to know about cartridges" is thing you need to know about cartridges" is
published by Ortofon Manufacturing A/S, 11 B published by Ortofon Manuacacturing AAS, 11B
Mosedalvei, DK2500 Copenhagen-Valby, Den-
mark.
WW 406 mark.
Catalogue entitled "Non-contact sensing deCaces", details a range of inductive proximity
viex
witches made by Warner Electric Ltd, St switches made by Wirner Electric Ltd, St
Helen Auckeand, Bishop Auckland, Co. DurHelen Auckland,
ham DLL14 9AA.
Set of leaflets on Zycor Prestel terminals describe an adaptor for use with an existing televi-
sion receiver, a cassette player to display sion receiver, a cassette player to display
recorded pages for demonstration purposes and
a dedicated Prestel monitor. Leaflets are oba dedicated Prestel monitor. Leaflets are ob-
tainale from Zycor Ltd, 33 Fortress Road, ond
The ZIP585 paper tape punch and reader are
described on two leaflets, available from Data Dynamics Ltd, Data House, Springfield Road,
WW 409 Hayes, Middx.
Designers' guide to the use of high-resolution a-to-d, d-too a converters, sample-and-hold am-
olifiers v -tof converters and digital meters is to-d, d-to-a converters, sand digital meters is,
plifiers, v-tof converters and
produced by Analog Devices Ltd, Central Aveproduced by Analog Devices Ltd, Central Ave-
nue, East Molesey, Surrey KT8 OSN. WW410

Brochure from Brown Boveri Kent contains details of a range of process control instrumentation, liquid latering equipment and are at Biscot Road, Luton, Bedfordshire LU3
WW411
1AL.

Leaflets on an 8-channel, 12-bit data acquisition equipment, based on 8K13 p.c.m. modulator and demodulator units, are available from
Johne and Reilhofer (UK) Ld, oddstones House, Thompsons Close, Harpenden, Herts.
AL5 4ES.
360° errors would suggest problems with he illumination of the coincidence photoomplete system less digital display was 90 mA . The system operated satisfactorly with a 40 metre long connecting cable between the masth
electronics assembly
Overall, the system described perform well as commercial instruments at a considerably lower cost. The inherently
well suited for use with a microprocesso well suited for use with a microprocessorter.
knowledgement. The valuable assistance Dr. B. D. Fairlie throughout the design References
. M. J. Brevoort and U. T. Joyner, Exp Type Cup Anemometer. N.A.C.A. Report
phasised that an infinite concentration of electricity is impossible, and that when the something snapped. He quoted the breakdown of capacitors, various glows and discharges as examples. These phenomena must be the result of the forces of equal and opposite actions exceeding a cerlocal electric charge into a wave, for instlocal electric charge into a wave, for inst-
ance. This safety valve, the point of evolution, is the point of catastrophy of Thom's theorem, the two bodies acting equally and in opposition his "attractors". There is a
close affinity between the minds of Maxwell and Thom; a fascination with maps, concrete geomentrical pictures of abstract
algebra. algebra.
If energy operates at 100% eftuciency it will always take the line of least action or
strain during the interaction of forces, strain during the interaction of forces,
wasting nothing. The attractive forces of gravity always act in a straight line between two centres of force, the line of least action. Although the forces of electricity
and magnetism must also be taking the line of least action, that line is often far from straight. The lines of least action in the space surrounding a magnet take some explaining. The fact that Maxwell did explain them theoretically and mathematic-
ally is indicative of his genius and the ally is indicative of his genius and the
validity of his theory. Modern theory can offer no explanation, whatever of the lines of least action surrounding a magnet. In
the case of gravity, there can be only one
straight line of least action between centres of force. Energy does not have a choice if it not the manifestation of an uncertainty principle. If the line follows the changing energy levels of a half cycle of a wave, that
is exactly what the line is describing is exactly what the line is describing.
The loophole found by Planck difficult to repair if the principle is applied to his theory and experiment. An infinite amount of energy cannot be concentrated in one volume in space.
Planck's theory
Planck's theory that electromagnetic energy is emitted in packets or quanta
rather than as waves grew from his theoretical and mathematical interpretation of the results of a single experiment, the ultraviolet catastrophy. Because the frequency of Maxwell's waves is a function of the centration of energy at their source the higher the frequency, Planck thought he could introduce an infinite amount of electromagnetic energy into a black box simply by increasing the frequency of the to find that when the frequency of the waves reached the ultra-violet spectrum, the wave energy in the box began to disappear. Planck had made himself a cavity resonator and the waves in his box were
beginning to resonate. The waves were satisfying the principle by making sure that an infinite amount of active energy could not be concentrated in the finite volume of his box. There is no sign of little

WIRELESS WORLD MARCH 1981 packets of energy in his box, only the resoenergy.
Planck concluded that electromagnetic energy was emitted not as a wave, but as individual packets of energy. The cyclic variations in the energy level of a Maxwell wave can be followed from its point of
evolution to point of devolution. The energy of the wave gradually alternates from nothing to a maximum, and then to nothing. Planck's packets do not show themselves until they are completely full,
and the amount of electromagnetic energy in every packet is always the same. This quantity, Planck's constant, forecasts the total amount of work the packet would perform by the expenditure of its whole energy. Planck's packet was later transphoton, the unit of the electromagnetic energy of light or to be more precise, the total electromagnetic energy of one cycle of a Maxwell wave, data not available to Maxwell before he died. two "bodies" acting and reacting, here are two "bodies" acting and reacting,
and one of them is Maxwell's ether. Planck's work is very important if the data he cleverly collected from his experiment is interpreted correctly and applied to the relevant equations of Maxwell. To
be fair, Planck was always dubious about accepting Einstein's photon. He and many of his contemporaries who were experimenting with electromagnetic waves in a rapidy expanding spectrum, suspected they might be dealing with a very unusual unusual description. Before Hertz had experimentally verified Maxwell's mathematical proof of the nature of light two experimenters, Michelson and Morley, were planning an experiment that was to
shake the foundations of physics and shatter the emerging picture of the universe so carefully and painstakingly pieced together by a lot of dedicated men and women. Experiment had revealed, prior to Hertz $z^{\prime \prime}$ experiment, many similarities between the
behaviour of both sight and sound, and as sound was known to be a wave of energy passing through a medium, the air, the analogy was taken to its logical conclusion. Light must be a wave of energy passing through a medium, the ether. The earth as not cause the ether to interact, and it was decided that an "ether wind" blew past the earth. Michelson and Morley set up an experiment to measure the velocity of the
ether wind. Ther wind.
the velocities of two beams of light shining at right angles to each other and travelling along paths of equal length, one beam pointing in the direction of the earth's the sun was stationary in the centre of the universe and they therefore had a point of reference for calculating the earth's direction of travel through the ether. They did not plan to measure the actual velocities of
the two beams of light, only changes in frequencies and wavelengths due to the effect of the ether wind which caused one
beam of light to travel more slowly than

IRELESS WORLD MARCH 1981
the other. A wave's velocity equals its Their experiment was completely un producive and chey tssued a communique warning physicists that light did not obey ravel towards each other along parallel straight lines, their passing velocity is the
sum of their individual velocities. Michelsum of their individual velocities. Michel son and Morley warned that light's veloc
ity was so constant the other body's veloc ity was so constant the other body's veloc
ity was always nil. Light always passed you at its constant velocity, no matter how fas ou approached it. They never discussed he case of someone travelling in the same direction as light. Newton's first law of tant velocity unless acted upon by an unbalanced force, and Newton's interpretaion of Michelson and Morley's findings ould be that light became a temporarily unbalanced force during the act of passing
another moving body and brought that body to a halt. Whether one is to believe Newton or Michelson and Morley must emain a matter of individual judgement. The word unbalanced means polarized, light in Michelson \& Morley's experiment The velocity of a sound wave travelling hrough air that is physically moving, wind, is the arithmetic sum of the velocities of both the wave and the wind when measured from the wave's point of origin reases, against the wind it decreases when measured from the wave's point of origin. Waves always travel at a constant velocity a medium of constant density. If the wedium is stationary but the course of the measured from its point of origin is unaf fected by the motion of the source. Ahead the source the wave's frequency in reases, astern of the moving source the right angles to the source's direction of at right angles to the source's direction of
travel is the frequency of the wave unaffected by movement of the source. This hange in frequency is the Doppler effect nder constant conditions the source's direction of travel only affects the orientastill and a moving sound source such as an aeroplane exceeds the velocity of sound, the sound barrier velocity is independent f the plane's direction of flight. Look at the plan view of Michelson and he source was split by the semi-transpa ent mirror A along two paths at righ ngles to each other, and reflected by mirors B and C back to mirror A where it was diagram clearly shows that the light source and mirror A are moving directly into the ace of the ether. If the ether is still, th only effect on the light wave would be to crease its frequency, the Doppler effect. source and the beam of light also sees mir or C moving away. When the light wave hits mirror C , the mirror implants a Doppler effect equal and opposite to the ment of the light source. The frequency of

Direction of Earthis motion
through the ether

The effect on physics of this one experiIternative but to consult the oracle."
he light wave is back to normal. A reverse ction of Doppler effects occur on the ligh eam's return journey. When mirror C eflects the light wave it implants Doppler effect, reducing the light wave's frequency. Mirror A is moving towards the light wave and therefore cancels the
Doppler effect produced by mirror C on he returning wave. No change in fre quency or wavelength takes place on this rm of the experiment. On the other arm vents take place. Because the light wave is avelling along a path at right angles to the arth's direction of travel through the ther, the magnitude of the Doppler effec is almost nil, taking place along two sides of a triangle whose base line equals the me the light wave takes to complete it ourney. No changes in frequencies o avelengths occur on this arm of the expe ment. Although this experiment was pioted through 360° detect the direction ing, or that the ether does not interact with he earth, and Einstein's theory stands or falls on Michelson and Morley's statemen hat light was a form of magic. The effec on physics of this one experiment was de to consult the oracle
Lorenz consulted it first and came away with an equation that solved the puzzle He reasoned that the ether must push against any moving mass and foreshorten
it. The faster you travelled the more it fattened your face. The ether in this heory had the capacity to perform work Because he was trying to explain the strange behaviour of light waves, he resource did something strange to sound waves called the Doppler effect. So he took the Doppler formula and using his nowedge of squares and roots produce an equation to forecast the amount
foreshortening. When an observer moved
you multiplied the observers' $\sqrt{\sqrt{1-\left(v^{2} / c^{2}\right)}}$ where v is the moving observers veeocity and c the light's velocity.
Although the value of $v^{2} c^{2}$ is insignifiAlthough the value of v^{2} / c^{2} is insignifi-
cant at normal velocities of atoms found on ant at normal velocities of atoms found on earth, when v approaches the velocity of
light v^{2} / c^{2} approaches unity, and when $v=c$ the equation reads $1-1=0$. When he moving observer reaches the speed of ight its sides disappear.
Einstein's attack on the problems of the moving observer were much more thor
ough. He could see that on the one hand light had an effect on the moving ob erver's velocity. On the other hand, ligh always travels through space at its constan velocity, the speed of light, although Max esistance of his ether. He eventually came o the sensible conclusion that the only way he could make sure that light alway passed the moving observer at its constan peed was to agree with Newton and stop he observer to a halt. He did this by nultiplying both the frequency and wav ength of light by Lorenz's equation. This duced light's speed to nil when the ting the velocities the speer had the constant speed of light. He the年ed the frequency of light TIME, and it vavelength SPACE, and they becam ariables dependant on the moving ob erver's velocity. To confuse the issue he bsolute units of time and space of the toms of the moving observer
This is admittedly an ingenious solutio oo the problems raised by Michelson an oomed into the wonderful world of rela vity, an interpretation of Lorenz's equa on which in Einstein's own words "is no justifiable by any electrodynamical facts his paperback, page
His paperback has been
K at least 22 timen reprinted in the throughout the world have bought th anslation of his book hoping to under and something of the physical world ound them. Most of them put it down up. Einstein said in his preface that h would do his best to explain his ideas as imply as possible and "in the sequence di connection in which they actually riginated." "Actually" he never did. H urselves we should contemplate myste ous measuring rods, cuckoo clocks, and avitational stopcocks for the use of oving observers who abruptly chang course without stopping, and he eventually ust happened to fit his theory. But ther he stops. Whether he simply forgot e stops. Whether he simply forgot to
mention how it all started we shall neve Einst
nstein's theory is not an easy target for ecause he of the conservation of energ because he avoided tampering with the wavelength and requency of light, but
changed instead the dimensions of the mase occupied by the moving observer
observers dimensions were being changed. ity, acceleration, density, force, work and energy, can be expressed simply in terms
of Newton's fundamental and absolute or universally constant units of time (T) and length (L), the one dimension of space or a volume L^{3}. The density of a mass (M) (L) is M / L^{3}, an acceleration L / T^{2} A force is the product of a mass and an acceleration, and if the concrete units of time and length are reduced, so are all forces applied to an atom's mass, and the total amount of work the atom will perform, its total
energy, is also reduced. Where does the lost energy go? In Einstein's theory, nowhere. When his moving observer approaches the "constant" speed of light, its total energy is almost destroyed; it is a physical wreck. Einstein could not reduce
the equal and opposite reactions of Maxwell's ether to the actions of the light wave, because his idol, Lorenz, in his other theory, the electron, had already forbidden the ether to perform work. Two equal and opposite laws for the one ether. Lorenz
will one day find his way into the Guinness Book of Records as a greater destroyer of energy than King Canute.
Einstein was forced to limit the velocity of an atom to the speed of light because exceeded the "constant" speed of light, he would mathematically become a centre of negative energy and vanish down a black hole, proof that you can prove anything mass that tended to shrink when it moved by the value of his equation. To balance his books and satisfy the principle of the conservation of energy, he discovered rest mass, which allowed him to unshrink mass by the same value. He called his theory
relativity because the total energy of each atom in the universe depended on the tom's velocity relative to a fixed and motoonless point in space, all atoms being onnected by bendable springs and flexitime clocks to conserve energy. Maxwell Einstein's theory using the argument in Article 852 of his treatise, that the force acting between two "bodies" must be a unction of their distance apart only, and if ity of the bodies, theory would not satisfy he principle of the conservation of energy. Einstein's favourite occupation was performing what he called thought experiments. In the portable laboratory of his ontradiction, that scientific history was bunk. His laboratory was the envy of a few econd rate accountants in a hurry. An analysis of debits and credits and their equal and opposite actions can be very
time consuming, far easier to cook the books and make yourself a quick profit. They renamed Newton's laws the three laws of non-motion. If it moved you either equation. Never in the understanding of feld of force, was so little owed by so many, to so few.

[^2]
A decimal Gray code

Easily converted for shaft position coding
by K. G. Barr, Faculty of Natural Sciences, University of the West Indies

For some incremental measurements, such as shaft position coding, the coding as it chana between adjacent codes.
Unfortunately it nodes.
converted back into b.c.d. to give a read-out. Gray scale is difficult and therefore expensive to convert and this decimal Gray scale overcomes the difficulty

The author has recently designed equipment to monitor wind speed and direction. The wind vane drives a slotted 1.e.d./photo-transistor pairs. A code is required to sense the position of the disc and transmit this position to the display and recording equipment. The reflected binary, or binary Gray code shown in
Table 1 has the required property that only one bit changes in adjacent codes, but is an expensive code to convert to a decimal form for display.

Table 1: It will be noted that the most significant
to 1 at a count of 16 whereas in the decimal Gray code it changes at a count of 10 . In Table 2, D_{0} ot D_{3} represent the decoded
decimal number. while of to g_{2}^{2} is the decimal number, while g_{o}^{0} to g_{1}^{2} is the
decimal Gray coding

	TABLE 1 Binary Gray	Decimal Gray
0	00000	00000
1	0001	0001
2	0011	0011
3	0010	0010
4	00110	00110
5	0111	0111
6	- 00101	- 0101
7	- 0100	00100
8	- 1100	1100
9	0. 1101	- 1101
10	1111	11101
11	- 1110	11100
12	1010	10100
13	1011	10101
14	01001	10111
15	1000	0110
16	11000	10010
17	11101	10011
18	1-1111	0001
19	1110	0000

The decimal Gray code also shown in Table 1 is much cheaper to convert. It is "reflected" after each decade, and the low order bit of the next higher digit (b_{b}^{1}) is required for conversion. The b.c.d. digit $\mathrm{b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$) corresponding to the decimal Gray digit $\left(g_{3} g_{2} g_{1} g_{0}\right)$ is
$\mathrm{b}_{0}=\mathrm{b}_{0}^{1} \oplus \mathrm{~g}_{3} \Theta \mathrm{~g}_{2} \oplus \mathrm{~g}_{1} \oplus \mathrm{~g}$
$\mathrm{b}_{1}=\mathrm{g}_{3} \Theta \mathrm{~g}_{2} \Theta \mathrm{~g}_{1}$
$b_{2}=\left(g_{3} \Theta g_{2}\right) b_{0}^{1}+g_{1} b_{0}$
$\mathrm{b}_{3}=\mathrm{g}_{3} \overline{\mathrm{~b}}_{0}^{\mathrm{T}}+\overline{\mathrm{g}_{2} \mathrm{~g}_{1}} \mathrm{~b}_{0}^{1}$
Whatever the code used, it will in general be non-reflective at the zero point in a scale used to measure shaft position. If
the angle is to be measured in 1° steps the codes at the zero point are as shown in Table 2. Additional logic must be added so that the offending bits g_{2}^{1} and g_{1}^{1} are set equal to g_{1}^{2} before conversion when $\mathrm{D}_{0}=0$ and the last value of $\mathrm{D}_{2} \mathrm{D}_{1}$ when
$\mathrm{m}_{0}=1$ was 00 or 35 . The logic required for the complete conversion is shown in Figure 1
It should be noted that the zero point logic is more likely to be simple if a used. For example, in the example described D_{0} is reflective because the transition occurs at 360° which is an even multiple of ten

Fig. 1. The logic required to convert a decimal Gray code for the digits 0 to 360 (g) into a BCD code (b). The elements on point remove the ambiguity at the zero 349
350
351
358
359
000
001
\ldots
009
010

ways. Magnetic and disc recorders, computers, one way or another, and this book, which consists of contributions from several well-known authors, sets out to explain to the layman what
has happened to television since it changed its has happened to television since it changed it
name to video. There are pieces on recording on using a television camera with a recorder, on aerials and cable distribution, on videotex on how to spy on shoppers.

Videotex, by Roger Woolf

184pp, hardback
Heyden, $£ 7.00$
Few developments have given rise to such a
tangle of offshoots and variations tangle of offshoots and variations as has the
television information system name for the whole mass of systems in use or on trial is videotex, which is adopted by Roger Woolfe as the title for his book. This introduc
tory text, intended for readers tory text, intended for readers with a non-tech
nical interest in the subject, is concerned only with interactive systems, typified by the Post
Office Prestel service Office Prestel service.
The first secrion is
The first section is a general description of how they are used, where the information comes from and some guesses on the marketing of such systems. Prestel, the videotex used in the UK, is
then oulined from both the users' and informa-tion-providers' points of view, with a look at
costs and future prospects. Final velopments in Europe, Japan and 'North America are briefly examined. The book
concludes with and concludes with a little crystal-gazing on the erms.
Mr Woolfe's book is aimed squarely at the potential business user or participant, and it past, present and future of these new and still poorly understood systems.

The Art of Electronics, by Horowitz and Hill 16pp, paperback. Cambridge University Press, $£ 12.0$
Athough intended for possible college use and minedly non-mathematical, and shows iust ho ir it is possible to go in teaching electronic sing the practical approach. The authors' detate of innocence to a reasonable proficiency in circuit design. Since this is recommended for one-year college course, the said reader is more
likely to find himself ather than being graciously conducted, but rather than being graciously conducted, but
nevertheless, if he reaches the standard of competence implied by the content of the book, he eoretically based engineers. It is impossible to list the ere is very little the averate contents here but know that is not covered in a varying needs to Know hat is not covered in a varying amount of
detail. Fundamentals, linear and digital design are treated in detail (with many practical circuits and examples of how not to do it), as are min
and micro computers. A section is and micro computers. A section is devoted to
h.f. techniques and high-speed switching tad h.f. techniques and high-speed switching and
there is a chapter on measurements. Appendices contain, among other things, sections on rele-
vant mathematics, i.c. types and some specimen data sheets.

Throughout the book, the authors hav
voided jargon; when its use is necessary, it is strain. There is evidence of a certain amoun of strain on this account (descriptions of RC
filters, for example, without much more lavish reference to poles and zeros, must have been produced book, which can be highly produced book, which can be highly recom
mended.

Hi-fi Year Book 1981, Ed: Kenneth Ellm 256pp, paperback. This familar annual is now available, albeit in a new format and, for the second year, additional contents. Page size is increased to A4, and the
subtite "and Home Entertainment" recognes the inclusion of five sections on organs, colour tv, radio/ cassette recorders, games and video cassette recorders. All the information on high
fidelity equipment traditionally presented is also fidelity equipment traditionally presented is also
there, in directory form, and there are a a umber of articles on developments in home electronics.

Complete Handbook of Magnetic Recording, by Finn Jorgensen. Tab Books, $\$ 10.95$
The title of this book seems, at first sight, to be an optimistic one for a paperback. On investigahis nature could be called anything else: it lives A first couple of chably well.
A first couple of chapters gives a fairly brisk arrived at its current position, after which the hree stages. Firstly, basic magnetic recording in the mechanics of recording and playback from tape are examined in some detail. As in the rest
of the book, mathematics are used her of the book, mathematics are used here only in
extremis and could probably be ignored by deterextremis and could probably be ignored by deter-
nined innumerates. Two comprehensive chapers on heads, tapes and discs then follow, and he remaining six chapters are concerned wit heginning with a piece on digital recording including a section on f.m. and p.c.m. techniuseful nine-page list of suggestions for furthe. reading is given at the end of the book.

160pp, hardback.
Midas Books, 88.50 .
Not, perhaps, quite as comprehensive as its title implies, the little book is concerned with the and-headphone times to the 1930s and is writal with the interests of the collector in mind, bein one of a collector's series from Midas. Mr
Constable mentions Constable mentions most of the developments,
people, places and companies that have contribpeople, places and companies that have contrib-
uted to the evolution of the wireless receiver,
and the book is and the book is very well iliustrateedss with photo-
graphs and drawings of earry equiver graphs and drawings of early equipment. An
appendix lists the important features and appendix lists the important features. and
original price of several hundred sets somewhat expensive at $£ 8.50$, the book does provide a single source of information on some
very collectable equipment

"Tektronix understands: formoney. We sell the finest low cost oscilloscopes in the world.

The complete range of low-cost oscilloscopes avail more choice and more value for money.

Because everyone needs a slightly different performance in either band-width sensitivity or extra control functions, we offer a range There are 4 dual-trace oscillos
copes to choose from in the Telequipment D1000 Series
family, with 10 or 20 MHz family, width.
bandwidths

And there are 5 different Tektronix T900 Series oscillos copes ranging from a 15 MHz single trace oscilloscope to a 35 MHz dual-trace oscillos
cope with Delayed Sweep cope with Delayed Sweep.
All our oscilloscopes are thoroughly pre-tested to mee
the high standards that go with our name. The result solidily built oscilloscopes
which are not only easy to operate and maintain but also represent the most reliable buys on the market. The T900 Series is supported by a full range or accessories including battery power packs,

Telequipment oscilloscopes are sold
serviced worldwide by Tektronix Please send me more information on Telequipment Oscilloscopes -900 Series Oscilloscopes Name
Position
Company
Address

Telephone

European Marketing Centre
Postbus 827, 1180 AV Amstelveen
The Netherlands
Tektronix advantages. For a start, they have very low self-inductance and will operate up to about 100 kHz . Ruggedly constructed, each decade box contains 4 or 5 switched decade resistors according to requirements.

Through the use of switches with laminated copper brushes and silver faced contacts, the contact resistance uncertainty has been reduced to $\pm 0.00002 \Omega$ per decade, with a d.c. accuracy of $\pm 0.05 \%$ for most decades. Which means you can actually use a Sullivan Decade Resistance Box to form a 'standard' resistor against which other resistors could be judged for accuracy of value.

And the range goes further still. Our Dual Dial Decade Resistance Box No. AC1049, for instance offers eight decades in a compact 4-dial box, with a range of 0.01Ω to $1 \mathrm{M} \Omega$-again with an accuracy of 0.05%. Such a system allows you to save space and reduce residual
resistance and inductance
Want to know more about dialling-an-ohm? Then simply dial the number below for full details.

Sullivan

H. W. Sullivan Limited, Dover, Kent.
H. W. Sullivan Limited, Dover, Kent.
Tel: Dover (0304) 202620 . Telex: 96283

Tel:

DE LUXE EASY TO BUILD LINSLEY HOOD
$75 W$ STEREO AMPLIFIER $\mathbf{\varepsilon 8 5 . 0 0 ~ + ~ V A T ~}$

$\mathbf{T} 20$ + $\mathbf{2 0} 20$ W STEREO AMPLIFIER $\mathbf{£ 3 3 . 1 0 + \text { VAT }}$
 ESB.40+VAT.

BLAEK WOLS
 MUSIC EFFECTS DEVICE - AS FEATURED

IN ELECTRONICS TODAY INTERNATIONAL!

COMPLETE KIT ONLY £49.80 VAT (single delay lif
De Luxe version (dual delay line system)

POWERTRAN
CHROMATHEQUE 5000 schannel lighting effects svstem
 Kit includes fully finished mealumork, fibreglass PCB controls, wire, etc. - Completer right down to the last nut and bort!

MPA 200100 WATt ((ms into 8n) MIXER/AMPLIFER

COMPLETE KIT ONLY $£ 49.90$ + VAT! MATCHES THE
CHROMATHEQUE 50 CHROMATHEQUE 5000 PERFECTLY!
 plifer section ot the MPA 20 O has proved not only very veconomical but very rugged and reliable too. This

COMPLETE KIT.

£64.90 + VAT:
MANY MORE KITS ON NEXT PAGE! our catalogue is Free! write or phone now!

POWERTRAN ELECTRONICS

Value Added Tax not included in prices

TRANSCENDENT 2000 smgle board sywtuesizer

COMPLETE KIT ONLY
$£ 168.50$ + VAT!

NEW! TRANSCENDENT POLYSYNTH

Cabinet size $31.1^{1 "} \times 19.6^{\prime \prime} \times 7.6^{\prime \prime}$ (roar) $3.4^{\prime \prime}$ (front)
TRANSCENDENT DPX

EXPANDABLE POLYPHONIC SYNTHESIZER
AS FEATURED IN ELECTRONICS TODAY AS FEATURED IN ELECTRONICS TODAY

 0.55% mod 0.189, ,
COMP,
COMPL Extre voices, $\varepsilon 52+$ VAT 1 or $648+$ VATit ordorad with k EXPANDER, COMPLETE KIT £295

Another superb design by
synthesizer expert Tim Oi
Electronics Today International
COMPLETE KIT
ONLY

£299 + VAT!
Cabiner sizz $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}\left(\right.$ (rear) $3.3^{\prime \prime}$ (front)

 (omposing, elcic. elt.).

POWERTRAN
MANY MORE KITS AND ORDERING INFORMATION ON PAGE 93

elelator

Did you know that Elektor is the only monthly electronics magazine to supply printed circuit boards for featured
projects? At present over 300 different projects? At present over 300 different boards are available
with designs covering many aspects of the hobby ranging with designs covering many aspects of the hobby, ranging
from microcomputers to electronics in the car. A novel sound generator is featured in the March issue together with
constructional articles for a logic analyser and a mediu constructional articles for a logic analyser and a medium
cont
waveband receiver waveband receiver. Some further n
Junior Computer are also included.

Place an order with your newsagent or order direct:from Elektor Publishers Ltd., 10 Longport, Canterbury, Kent Price 60 p (+20 p postaqe and packing)

SIEMENS

The all-standard TV aerial tester - for both the professional and enthusiast The Siemens S43202-M-CTV Antenna Level
Meter is a portable, self-contained unit which greatly simplies antenna orientation to receive TV signals including those of foreign transmission.
Signals are visually monitored on the integral 70 mm diameter screen, giving the facility of detecting ghosting,
directional pointers.
The unit is very accurate, yet remarkably simple to operate and embodies all the technological
sophistication allied with supreme reliability for
which Siemens is recoognised. which Siemens is recognised.
Contact Telecommunications Test Equipment Department at:
Siemens Limited, Siemens House, Windmill Road,
Sunbury-on-Thames, Middlesex Tel. Sunbury-on-Thames 85691

A Siemens tester for all standards

PROBABLY THE MOST EXPANDABLE KIT ON THE MARKET TODAY. A COMPUTER FOR YOUR REQUIREMENTS TODAY AND TOMORROW, BE IT BEGINNER'S KIT, OEM CONTROLLER, OR FULL DISC DRIVE SYSTEM.
EXPLORER-85-NOT THE CHEAPEST JUST THE BESTI
EXPLORER-85-NOT THE CHEAPEST' JUST THE BEST!
$8085 \mathrm{Acpu}-\mathrm{S} 100$ slots (expandable to 6) - Powerful 2 k Monitor - 4 K RAM (expandable to 64 k) - 8 k Microsoft Basic - Speed
$3.1 \mathrm{Mhz}-4,8$-bit $1 / \mathrm{O}$ Ports $-1,6$ bit port -14 bit 3.1 Mhz - 4, 8 -bit $1 / 0$ Ports - 1,6 -bit port - 14 -bit Binary counter- all programmable - Stand alone Keyboard Terminal -
$64 / 32$ charcs 16 lines - upper and lower case - full cursor control - power supply unit - NO EXTRAS NEEDED.

Limited Budget? You can purchase your Explorer-85 in sub kits starting from $\mathbf{\varepsilon 8 5}$ for the Mother Board Level 'A'

64K ‘JAWS’ S100 DYNAMIC RAM CARD

Designed for 8080,8085 and 780 bus signals, works in Explorer 85 ,
Tuscan, Horizon, Sol as well as all other well designed $\$ 100$ compurers.

$16 K$	$£ 149$	$£ 169$	$64 K$	$£ 284$	$£ 304$
$32 K$	$£ 194$	$£ 214$	16 K	upgrade	kits
$£ 45$					

ReSNOCRKLINE 80
CENTRONICS 737
E359
E359
E34
BIG APPLES

BIG
16K
$32 K$
$48 k$

48K $\ldots \ldots \ldots$.
Full range of extras £599
$\mathbf{8 6 5 9}$
$\mathbf{6 6 5 5}$

WW - 027 FOR FURTHER DETAILS

New Profile Amplifiers- Two New Series

NO QUIBBLE 5 YEAR GUARANTEE 7.DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE

NEW PRE-AMPS
 HY6 (mono) and HY66 (stereo) are new to I.L.P's range of
 HY6 (mono) and HY66 (stereo) are new to I.L.P's range of and styling ensure their being compratible with all II. P power-amps both MOSFET and BIPOLAR, giving you chance to get the best possible reproduction from your equipment. HY6 and HY66 pre-amps are protected against short circuit and wrong polarity. Full assembly instructions are provided. Mounting boards are available as below.
 Active Tone Control circuits provide $66-90 \times 20 \times 40 \mathrm{~mm}$. Inputs Sensitivity - Mag. PU. -3 mV : Mic - selectable $1-12 \mathrm{mV}$: All others 100 mV . Tape O/P- 100 mV : Main O/P 500 mV : Frequency response - D.C. to $100 \mathrm{KHz}-3 \mathrm{~dB}$.
 HY6 mono $£ 6.44+97 \mathrm{p}$ VAT Connectors included
 HY66 stereo $£ 12.19+£ 1.83$ VAT Connectors include
 B6 Mounting Board for one HY6 78p+12p VAT
 B66 Mounting Board for one HY66 $99 p+15 p$ VAT

- DISTORTION TYPICALLY - LATEST DESIGN HIGB
 - S/N RTTIO-90dB (Mag. P.U. - 68 dB)
$\xrightarrow{\text { margin on }} \begin{aligned} & \text { mag. P. } \\ & \text {. } \\ & \text {. }\end{aligned}$

OHUT P PTS SWWTCCES SMD HEEDS ONITY OTREGDIATED NEEDS ONLY ONREGLARTED
POWER SUPPLY +15 to +60 T

NEW POWER SUPPLY UNTTS

Of the eleven power supply units which comprise our current range, nine have toroida
 the range are compatible with all I.L.P amps and pre-amps with types to match whatever I.L.
power amps you choose.
PSU30 15 V at 100 mA to drive $u p$ to $12 \times$ HY 6 or $6 \times$ HY 66

- THE FOLLOWING WILL ALSO DRIVE I.L.P PRE-AMPS PPSU36 for use with 1 or 2 HY30's - ALL THE FOLLOWING USE TOROIDAL TRANSFORMERS PSU50 for use with 1 or 2 HY60's PSU60 for use with 1 HY120 PSU70 for use with 1 or 2 HY 120's PSU15 for use with 1 or 2 MOS120 PSU90 for use with 1 HY200 PSU95 for use with 1 MOS200 PSU180 for use with 1 HY400 or 2 HY200
$84.50+0.68 \mathrm{p}$ VAT $£ 8.10+£ 1.22$ VAT $£ 10.94+£ 1.64$ VAT $13.04+£ 1.96$ VAT $£ 13.32+£ 2.00$ VAT
$£ 15.92+£ 2.39$ VAT £16.20 + £2.43 VAT £16.20+£2.43 VAT $1616.32+£ 2.45$ VAT
$£ 21.34+£ 3.20$ VAT £21.34+£3.20 VAT
$£ 26+£ 3.22$ VAT
\star Freepost facility
When ordering Or writing abouti.L.P products, you do not need to stamp
the envelope. Mark it FREEP EST plus the code shown in the address
below. We pay the postage for you.

[^3]
BRITAINS FOREMOST OUALITY MODULE SUPPLIERS

[^4]I enclose Cheque \square Postal Orders \square International Money Order \square
Please debit my Access/Barclaycard AccountNo.

1971-1980

TEN YEARS OF PLANNED

PROGRESS

When, in 1971 , lan L. Potts founded his now world-famous company, exploiting to the full, the potential that lay in rational approach to
New thinking was badly New thinking was badly needed. The result was a range of modules
revolutionary in concept. The rightnessof this new thinking is bevthe size of the company today, its new factory, its vast exports, its
becceprance by constrictors acceptance by constructors as the modulest to build vith. The rants its
grows bigger and better. Exciting new lines (in grows bigger and better. Exciting new lines (in no way conficicting
with existing ones) are well past drawing board stage. This is why
1.L.P are simply ahead and staying there.

HERE'S HOW TO TALK TO

ALL OF THE PEOPLE ALL OF THE TIME
with a communications system built up from the all-embracing, constantly expanding range of REDITRONICS EQUIPMENT

The latest addition to that range -

'SERIES TWO'

MESSAGE REPEATER
with 4-TRACK CAPABILITY
for four-message or four-language simultaneous or selective tape playback through external amplifiers, plus
one selected track through an internal amplifer. 'Add-ons' - slide-synchronizer, monitor loudspeaker, associated multi-channel amplifiers.
When it comes to SOUND communications, REDITRONICS EQUIPMENT does MORE FOR LESS. REDITRONICS is the one name that says it all.
Send for details of any item, and our full brochure, of a range of equipment that can provide every integrated link in the chain of a tailor-made sound communications system

REDIFFUSION REDITRONICS LTD
La Pouquelaye, St Helier, Jersey, Channels Islands
Tel: Jersey (0534) 30321 Telex: 4192341
U.K. DEPTT: River View Road, Sitterexe, Southampton, Hampshire, U.K.
fel: Southampton (O703) 555566

DISTRRBUTORS FOR GREATER LONDON \& HOME COUNTIES:
MUSITUNE LTD.. 388 Green Lanes, London N4 1DW Tel: $01-8021163$
REDITRONICS
TOTAL SYSTEMS CAPABILITY

WIRELESS WORLD MARCH 1981

WIRELESS WORLD MARCH 1981

READ ALL ABOUT IT - all the latest on home entertainment equipment and ideas in .
 HI FI YEARBOOK AND HOME ENTERTAINMENT 1981

Published again in November, this new 1981 edition in larger magazine size means more comprehensive coverage of the whole range of home entertainment equipment, from aerials to headphones, from microphones to video recorders and from radios to electronic organs, plus detail of plus details of stockists, Hi Fi Yearbook and Home Entertainment 1981 is Available from leading newsagents and book
1980. Price $£ 3.00$. If you have difficulty in obtaining your copy order direct from the publishers @ $£ 3.50$ inclusive

ORDER FORM

To: General Sales Manager, Room 205, Quadrant
House, The Quadrant, Sutton, Surrey, SM2 5AS. House, The Quadrant, Sutton, Surrey, SM2 5AS.
Please send me
copy/copies of the HiFi
Yearbook and Home Entertainment $1981 @ £ 3.50$
$\underset{\text { (please print) }}{\text { Name }}$
Address

WIRELESS WORLD MARCH 1981
 TELETEXT DECODERS DRASTICALLY REDUCED
feady-buit decoderes (bosed on Wireless World design) from $£ 125+$ YA

WW - 24 FOR FURTHER DETALLS

Farrison Bros.
Electronic Distributors
22 Milton Road, Wostcliff-on-Sea

Happy Memories

4116	200 ns	$\mathbf{£ 2 . 2 5}$
2114	200 ns	$£ 2.95$
2708	450 ns	$£ 3.95$
2114	450 ns	$£ 2.20$
2716	5 volt	$£ 5.25$

Memorex Soft-sectored mini-discs for PET, TRS-80 etc. Supplied in FREE LIBRARY CASE, $£ 19.95$ per 10

Pins
Pence
Low Profile I.C. Sockets by "T ence $\quad \cdot \begin{array}{r}81416182022242840 \\ 101112161720212837\end{array}$ Memory Upgrade Kits for Apple, 2020, TRS-80, etc.:
from 18 , please phone. Quantity prices available on request. Government and Educational Orders welcome. Trade accounts opened.
All prices include VAT. Postage FREE on order over $£ 15$, otherwise add 30 p
Access and Barclaycard welcome
HÄPPY MEMORIES, DEPT. W.W.
GLADESTRY, KINGTON
HEREFORDSHIRE HR5 3NY Tel. (054422) 618

Cut costs and speed trouble shooting

Huntron Tracker

his easy to use test instrument displays shorts, opens, and leakage in soid stare

 MTL Microtesting Limited 15 Butts Road, Alton, Hampshire wW - o69 FOR FURTHER DETAILS

The expiting inTinearI/Cs

Analog Systems, the fast growing linear I/C company Arizona whose products are available from Pascall, offier a wide
range of high performance linear integrated cirction Hi-Speed Amplifiers
$\mathrm{MA} 324 \pm 130 \mathrm{~V} / \mathrm{S}$ s slew rate
450 MHz gain-bandwidth
450 MHz gain-bandwidith
MA $326-350 \mathrm{MHz}$ goún

- mirloc MA $326-350 \mathrm{MHz}$
bandwidth provuct.
400nS seltling time. Sisvitimis

PEAK PROGRAMME AND DEVIATION MONITORING peak deviation meter

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireiess World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along wish improved
 etc.

Wireless World Dolby noise reducer

ELECTRONIC POWER UNITS FOR XENON ARC AND MERCURY ARC LAMPS
ÜNTS AVALIABLE For LAMPS RANGING FROM 75 to ${ }^{\text {sjoo }}$ WATTS: Kamp housings and.lens systems manuactured as standard off the shelf models or to
specific design

 Dynamic range $>90 \mathrm{~dB}$
Comilee Kit PRICE: $£ 49.95+$ vaT (3 head model availible)

\|Price $667.60+\mathrm{VAA}$
Price $\mathrm{E} 2.75+\mathrm{VA}$

Also vaiabble ready built and iested

Caibraion tapes are avaiabibe for open-reel use and tor cassete (specity which)
Single co chanel Price $£ 10.50+$ VAT

All kits are carriage free

ease send SAE for complete lists and spectitications Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432 Telex 377106

TRANSDUCER and RECORDER TRANSDUCER and RECORDER
AMPLIFIERS and SYSTEMS

49/51 Fylde Road Preston PR1 2×0 Telephone 077257560
ww - 031 FOR FURTHER DETAILS

JOIN THE KEYBOARD REVOLUTION!
 NEW CASIOTONE NEW
401
f295 $\mathbf{4 0 1}$
$£ 295$
RRP eas ${ }_{\text {RRP } 5 \text { cas }}$

 Sill

Memories

2114 -300ns
4116-200ns
2708-450ns
$2516-450 \mathrm{~ns}$
2716-450ns
74LS240
74LS243
74LS244
74LS245
$1 \mathrm{k} \times 4$ SRAM $16 \mathrm{k} \times 1$ DRAM $1 \mathrm{k} \times 8$ EPROM 2kx8EPROM 2kx8EPROM

Please add 50 p for postage-Prices exclude V.A.T. Send s.a.e. for price list.

STRUTT LTD.

ELECTRONIC COMPONENT DISTRIBUTORS MANUFACTURERS \& SUB-CONTRACTORS to the ELECTRONIC INDUSTRY
3c Barley Market Street
Tavistock
Devon, England PL19 0.JF
Tel. Tavistock (0822) 5439/5548 Telex: 45263

ELECTRONIC VALVES

 WANTEDAll Types Receiving, Transmitting, Industrial

$$
\begin{aligned}
& \text { PL504-PL802-PCL805-CV131-CV136- } \\
& \text { CV138-CV329-CV345-CV450-805- } \\
& 807-813-2 K 25, \text { Etc. }
\end{aligned}
$$ 807-813-2K25, Etc.

PYPE HAYES RADIO LTD. 606 Kingsbury Road Birmingham B24 9PJ 021-3734942
wW - 055. FOR FURTHER DETAILS

WIRELESS WORLD MARCH 198

CS1830 from TRIO

Since it's introduction, the CS 1830 has been our top seller,
and no wonder, when you glance at the comprehensive specification and the extremely attractive price which
includes two matching
Add to that the fact that we can normally supply from stock Add to that the fact that we can normally supply from stock
and you have a winner. Some of the edeails are listed here but if you need further in be hyppy to assist.
C.R.T.:
$120 \times 96 \mathrm{~mm}$ rectangular PDA with internal graticule
Y Bandwidth:
$\mathrm{DC}-30 \mathrm{MHz}$
Sensitivity:
$5 \mathrm{mV} / \mathrm{div}(30 \mathrm{MHz})$
$2 \mathrm{mV} / \mathrm{div}(20 \mathrm{MHz})$
8

Invit RC:
$1 \mathrm{M} / 23 \mathrm{pF}$

$1 \mathrm{M} / 23 \mathrm{p}$
Risetime:
Beam
11.7 nS
Beam Switch:
Chop /alternate
Chop/alter
Modes:
${ }_{\text {CH1, }}^{\text {CH2 }}$, H , Dual, Add, Subtract
Triggered, auto, or single shot
$0.5 \mathrm{~S} / \mathrm{div}-200 \mathrm{nS} /$ div (40 ns using $\times 5 \mathrm{mag}$) 20 ranges in
${ }_{1-2-5}^{0.55 \text { sequence }}$
Sweep Delay:
location
\mathbf{z} Modulation:
TTL compatible \qquad
Tract R Rotation
Electrical
And
And the Prict
$\mathbf{£ 4 5 5}$ + VAT (includes 2 probes)

WRD-515 rectemy fre

NRD 515 SYNTHESISED HF MONITORING RECEIVER
NHD 515 MULTICHANNEL MEMORY UNIT
$£ 948.75$ inc. VAT
VA 515 LOUDSPEAKER UNI
£161.00 inc. VAT
$£ 27.60$ inc. VAT £34.50 inc. VAT
The NRD 515 is a PLL-synthesised communications receiver of the highest class featuring advanced radio technology combined with the
hest digital techniques. The new NRD 515 is full of performance advantages including general coverage, all modes of operation. PLL tigital atest digital techniques. The new NRD 515 is tull of performance advantages including general coverage, all modes of operation, PLL digital
VFO for digital tuning, 24-channel frequency memory (option), direct mixing pass-band tuning etc. JRC's 65 years of radio communications. and
experience will give you "the world at your fingertips s. The NRD 515 is but a single item from the JRC product range which extends all the
ent
LOWV ELECTRONICS Ltd.
CHESTERFIELD ROAD, MATLOCK, DERBYSHIRE DE4 5LE

PRINTED CIRCUITS
 FOR WIRELESS WORLD PROJECTS

	0
Pline r.t. pr	
A Audio compres	
Cassette recorde	
Audio comjander-July	
Time code clock-August 1976	
Date, alarm, b.s.s.t. switch-June 1977	
Audio preamplifier-November 1976	
Additional circuits-OClober 1977	
Stereo coder-April 197	
key	
bo	
tortion dis	
Low distorion audio oscillato	
sceive	
Metal deiector-July 1978	5
Oscilloscope waveform store-October 19	
gulator for car alternator -August 197	
deband noise reducer-Nove	
Versatile noise generator-Janu	
200 MHz freque	00
High performance preamplifiter	
Distorion meter and osciliator-July 19	
Moung coil prea	
Amplification system-OCtooeri $1979-3$	
Digital capacitance meter-April 1980	
Audio sp	
section equalizer-June 1	
Floating-bridge power amp- Oct. $1980-1$ s.s. (12V or 40 V)	2 V or 40V) $\quad \pm 4.00$
Boards are glassfibre, rolle V.A.T. and U.K. postage. Airmail add 20%, Europe add 10%, Insurance 10% Remittance M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2	

WW-050 FOR FURTHER DETALIS

Marshall's

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of
components, test gear, tools, etc.
Specially interesting to the radio amateur are the following Leader instruments available
from stock:

Sent for our latest
cataldoyue. Free 10 in

A. Marshall (London) Ltd.
Kingsgate House,

Kingsgate House,
Kingsgate Place,
London NW6 4TA.
Industrial Sales: $01-3281009$

 ${ }^{1 / 4 / \text { W } 5 \%} 1000$ (per value) +
 £3.00 1000 (per value) + carr. and V.A.T. Following values only.
 6E8 33E 100 E 120 E 360 E $470 \mathrm{E} 560 \mathrm{E} 2 \mathrm{K4} 2 \mathrm{K7} 7 \mathrm{KK} 7$ 470E560E $2 \mathrm{~K} 42 \mathrm{K7} 4$ K7 $5 \mathrm{~K} 7 \mathrm{K5} 8 \mathrm{~K} 2100 \mathrm{~K} 120 \mathrm{~K}$ 15
 PBRA LTD. PBRA LTD. Golden Green, Tonbridg Kent, TN11 OL Member Crystalate Group
 Wirewound Power Resistors
 [Ceramic). 5w-17w 085-39K from $£ 9.35100$.
 Cable Sleeves and Ma from $£ 1.311000$.
 Cf. Resistors. $1 / 8 \mathrm{w}-2 \mathrm{w}$ from
 Grimp Terminals. Elma Knobs
 and Dials, Audible Warning
 Devices from $£ 1.14$ each
 (state interests)

WW - 054 FOR FURTHER DETAILS

To: General Sales Dept., Room 205
Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
Please send me copy/ies of the Wireless World Guide
to Broadcasting
Stations (18th edition) @ $£ 3.25$ a copy inclusive, (U.K.), to Broadcasting Stations (18th edition) @ £3.25 a copy inclusive, (U.K.), IPC Business Press Ltd.

Name. olease print)

Registered in England No. 677128
Registered Office: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Jon the Protessionals...

O CLAYMILL ROAD, LIIGESTER LE4 7JJ, ENGLAND. Tel. 05333 7619220. Telex 34694 Chamco G CRIMLEK

To obtain further details of any of he coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to Your enquiries will be passed on to ye you can expect to hear from them from abroad require a stamp.
These Service Cards are valid for
six months from the date of
publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.
overseas subscription AGENTS

 Bolonsdale Sireel, ions Distibution Agen - Canada: Dovis. C.irculation
 Cyprus: Gonanal: Pross
 Donmark: Dansk

 Sarmany:W.E.S Saibach
GmbH. 5 Koln 1. Smbh. 5 Koin
filerstasse 2

 Sviniou Avinue,
Noa Smyni, Giocce.
 la: Intermation
 Cama Road, Bombery 1
Iran : A.D.A. 151 Khibann

 Markes. Stitei. Haxim
Hanna BIdg, Beirut Malaysis: : Times 330 Kim Song Road
Singapores, Malaysia. Malta: w.H.S.Smith
Continontilltid.
 Now zoolend: Gordon \&
Gotch (Now zealand) Lid.

 0边 simetatice

Athe
Citan
15

 Switzorland: Naville

WIRELESS WORLD
Reader Enquiry Service
429 Brighton Ro
Surrey CR2 9PS

Wireless World:

Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

Enquiry Service for Professional WIRELESS WORLD Wireless World, March 1981 WW 163
Readers ONLY.

South Croydon
Surre

Wireless World Subscription Order Form Wireless World, March 1981 WW 163

UK subscription rates
1 year: $£ 10.00$
USA \& Canada subscription rates
1 year: $\$ 33.80$
Overseas 1 year: $£ 13.00$
Please enter my subscription to Wireless World for 1 year

I enclose remittance value. IPC BUSINESS PRESS Ltd.

Name.
Address.

Clip the above Special Offer token to your order to obtain a 5% discount off the current trade price of any
AVO or DATA PRECISION instrument from:

Farnell International

 FARNELINTERNAMALINSRUMENTSLTD
WETHERBY.WEST YORKSHIRE.LS22 $4 D H$
for brochures and price lists use the Wireless World Product Reply Service
number below:

WIRELESS WORLD MARCH 1981

A dual trace 10 MHz high sensitivity oscilloscope At a price of $£ 230.00+$ VAT.
incorporating all the latest high technology Ensures British leadership in the low cost high developments to bring you all these
outstanding features as standard. performance oscilloscope market.
$10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
2 mV sensitivity on both channels.
Add and invert facility.
Probe compensation.
Push button X Y
Trace bution X

- Trace locate.

10MHZ (-3dB) over full display.
Complete with probes.

Pixmore Avenue P三X

114

43/4 digits - $£ 139$

NEW! Thurlby1503

The Thurlby 1503 provides more resolution and more effective accuracy, than any other meter in its price category. It's $10 \mu \mathrm{~V}, 10 \mathrm{~m} \Omega, 1 \mathrm{nA}$ sensitivity is ten times greater than the best $31 / 2$ digit meters, whilst its resolution exceeds even $41 / 2$ digit meters. Mains or battery operation, crystal controlled frequency function and current measurement up to 25A give it even greater versatility.

DC Volts	AC Volts	Resistance
32,768 counts	16,384 counts	32.768 counts
$10 \mu \mathrm{~V}-1200 \mathrm{~V}$	$100 \mu \mathrm{~V}-750 \mathrm{~V}$	$10 \mathrm{~m} \Omega-32 \mathrm{M} \Omega$
$0.05-0.1 \%$	0.25%	0.1%
		Diode Test
DC Current	AC Current	Frequency
8,192 counts	8,192 counts	39,999 counts
InA-10A(25A)	$100 \mathrm{nA}-10 \mathrm{~A}(25 \mathrm{~A})$	$100 \mathrm{~Hz}-7 \mathrm{MHz}$
O.15-0.3\%	$0.3-0.5 \%$	0.0025%
$(2 \% 10 \mathrm{~A})$	$(2.5 \% 10 \mathrm{~A})$	IVpk-pk. Pulse on
		below 50 kHz

Price $£ 139+£ 20.85$ VAT including test leads,
mains adaptor, and postage.
Thurlby Electronics Ltd. (0480) 63570
Coach Mews, St. Ives, Huntingdon, Cambs. PE17 4BN FROM

Please supply $\quad 1503$ multimeters at $£ 159.85 \mathrm{inc}$. VAT
L / We enclose cheque/PO for \quad Official orders accepted. wW - 087 FOR FURTHER DETALLS

MICRO SPEECH 2
 DOES YOUR COMPUTER SPEAK TO YOU?

MICROSPEECH 2 is a stand alone speech synthesizing unit. It
converts converts ASCIH text or phonetic code into a speech output.
MCROSEECH 2 .may be interfaced to any computer system
because all the computation necessary to synthesize speech is MICROSPEECH 2 . may be interfaced to any computer syste
because all the computation necessary to synthesize speech is
performed by its own dedicated microprocessor. Up to one thousand
phonetion phonetic characters, representing about one minute of speech, may
be assembled in the unit's internal buffer before it is commanded to speak.
FEATURES

- Extremely low data rate
required (40 bits/sec.)
- Runs from prionetic code, giving unlimited
vocabular operating software.
- English to phonetics tion directly from or
- Uses standard
V24 interface.
- Totally self contained
with in ter nalloudspeaker and power sup-

- No need to worry about complex interfacing
support software.
PRICE $\mathbf{\varepsilon 9 5 0}+$ VAT
Available from:
Strom: TIM ORR DESIGN CONSULTANT
55 Drive Mansions. Fulham Road, London SW
COSTRONICS ELECTRONICS 13 Pield Heath Avenu
Hillingdon, Middlesex. Uxbridge (0895) 38791

SUNITA ELECTRONICS LTD.

Our comprehensive range consists of the following Standard Units:
following St
MPM1/5in.
MPM1/6in. These are available in either MainsMPM1/9in. Powered or Wire-Frame Versions. MPM1/12in.
But we also manufacture a special VDU Monitor for computer applications. This unit illustrated above has spare capacity for additional P.C.B.s, etc. These are only available with 9 in . or 12 in
CRTs.

For further information
ring Staines (0784) 57007/55220 or write to:
Unit 18, Staines Central Trading Estate Staines, Middx. TW18 4XE

Professional ASCII Kevboards

THE 'APPLE' COMPUTER KEYBOARD

- 52 Kese 7 b.bit ASClil Coded

- Power Lighton Control
© Superty made size $12 x 5.5 x 1.51$

Ideal for use with TANGERINE, TRITON, TUSCAN, APPLE and
most computers. most computers.
Ex-Stock from Henr's.
This is definitely the BEST BUY. Supplied BRAND NEW in manufacturer's original packing (ANTT-1.TAPTICC). BAN
Just post remitance, total $£ 35.95$ (incl. VAT \& Post).

Barrie Electronics Ltd.
3,THE MINORIES, LONDONEC SN 1BJ
TELEPHONE: O1-488 3316/8

INSIST ON

VERSATOWER

BY PROFESSIONALS-

 FOR PROFESSIONALSThe VERSATOWER range o telescopic and tilt-over towers cover
a range of 25 ft to 120 ft (7.5 M to a range
$36 \mathrm{M})$.

Designed for Wind Speeds from
85 mph to 117 mph conforming with CP3 Chapter V, part 11

Functional design, rugged construc tion and total versatility make it

Trailer mounted or static, the VERSATOWER solves those difficul and ground level maintenance.

A programme of continuous product development has led to a range o over 50 models, all available at highly competitive prices. This
coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER

THE PROFESSIONALS' CHOICE

STRUMECH
VERSATON FRR
SSSTEM
'PORTLAND HOUSE, COPPICE SIDE BROWNHILLS, WEST MIDLANDS
TEL: 055433 4321. TELEX: 335243 SEL
ww - 071 FOR FURTHER DETAIL

The Art of Electronics

P. HOROWITZ and W. HILL

This is a text/reference book that emphasises electronic
circuit design techniques and scientific measurements. It begins at a level suitable for those with no previous exposure teevel of design proficiency, emphasising the techniques used daily by circuit designers. The overall approach is one of simplicity and practicality, and there are numerous design examples, with particular emphasis
contigurations and components.
Hardcovers $£ 35.00$ net Paperback $£ 12.50$ net

CAMBRIDGE UNIVERSITY PRESS

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive
range of equipment for processing all types of picture tubes range of equipment for processing all types of picture tubes,
colour and mono Standard or custom built units for estab-
costa lolised or new businesses. We export world-wide and have an
liscellent spares service backed by a strong technical team.
ext Full training courses are individually tailored to customers'

For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon, CRO2XX
$01-6841422 / 01-6840246$
WW-052 FOR FURTHER DETAIL

Practical Computing

If you are seeking enlightenment about word processing，then the March issue of Britain＇s leading microcomputer magazine is the place to start．Some Wopular word processing packages are surveyed and Wordcraft，which is used on the Pet，is examined，giving
you an idea of the facilities to look for when undertaking you an idea of the facilities to look for when undertaking
word processing on your system．

All this，plus a voucher worth 50 p，which halves th admission fee for the Microsystems 81 Exhibition bein held at the Wembley Conference Centre from Marc

It all adds up to unbeatable value in Practical Computing．Still only 60p．From your newsagent or pos this coupon now．

Also in this issue
－Reviews of the RAIR 320，a powerful system with multi－ ser capabiities．And of the new generation of printers some giving typewriter－quality print at less than $£ 500$ ．
－How a professional photographer is using a Tandy to help him run his business．
－Logic and Computing in Schools，with some ideas on the design of teaching programs

```
， Please send me a copy of Practical Computing every month for a year 1
enclose chequelP．O．for \(K 8\) UK \(\notin 14\) overseas，payable to IPC Business ． 1 Address
L－ーーーーー－ー－ー－－－wwo／s
```

STEREO PLAYBACK SYNTHESIZER PS 2001
（Europat．Pend．）

BRUENS ELECTRONIC
Telephono： $0049-2233 / 33872,0049-2235 / 42211$
Telex：West Gertin
＊SPECIAL OFFERS
${ }^{21144 L}$（450ns）

THANDOR TEST EO
DM235 Digital Muttimeter
DM350 Digital Multimerer
TM 352 Hand Held DMM
．
TM 352 Hand Held DMM
TF200 Frequency Meter

NEW RETAIL SHOP
367 Edgware Road，w／
Open： $9.30-5.30$

> ANY MAKE－UP OR COPY QUERIES CONTACT JOHN GIBBON 01－661 3500 extension 3561

A MATTER OF LNFE OR DEATH

When an accident occurs involving severe electric shock, people on the spot may be suffering from a kind of shock themse/ves. The
realisation that one has literally only seconds to realisation that one has literally only seconds to
save a life can itself be momentarily paralysing That's why Electrical Review has completely re-styled its Electrical Shock Chart. The new chart, prepared in consultation with St. John's
Ambulance Brigade, highlights the main points
in red, and explains and illustrates the actions to be taken so clearly that they can be grasped instantaneously even in a crisis. It also includes
 section on external heart compression. with Action this second could save a life. Post this coupon NOW.

VIVID RED AND BLACK. PLASTIC,CARD OR PAPER. SIZE 19 in $\times 131 / 2 \mathrm{in}(474 \mathrm{~mm} \times 346 \mathrm{~mm})$

wW - 091 FOR FURTHER DETAILS

Orme Scientific Limited
PO Box 3
Stakenill Industrial Estate

WW - 090 FOR FURTHER DETAIIS

ONE MONTH ONLY		ECOND USER BARGAII	
	V-302B		
	2-YEAR WARRANT		
£155			
ABL			
		7 Timebase	
V-550B DUAL CHANNEL $50 \mathrm{MHZ} \ldots . £^{\prime \prime} 95$HITACHI MONITORS: $9^{\prime \prime}-£ 95,12^{\prime \prime}-£ 139,17^{\prime \prime}-£ 169$			

UNIVERSAL INSTRUMENTS are now main distributors for

IN STOCK NOW:
UNIVERSAL modes, 8010,8012 and the exciting 8050 bench model

plus a wide range of accessories. Universal offer one of
the largst ranges of electrical test instrments and
accessories from stock, backed by a re-clibibration and the largest ranges of electrical test instiuments and
accessories from stock, backed by a re-colibrotion and
certiticaction senvice. Send now for your copy of our F RRE certititation serice.
20 page catalogue.
UNIVERSAL INSTRUMENTS
Main Street, Leire, LLHtervor
Telephhone. 0455 , 209665
Telephone: 0455209665
ww - 085 FOR FURTHER DETAUS

S 100

Do You Have All These Facilities On Your S 100 System, With Just Two Boards?

SEMEL

MICROCOMPUTER - HARDWARE - SOFTWARE
3c Barley Market Street, Tavistock, Devon PL19 0JF Tel. Tavistock (0822) 5247. Telex: 45263

CENTRE INTERNATIONAL ROGIER, BRUSSELS MAY 5-7, 1981
IS an important specialist exhibition for all who are interested in small computers, peripherals, terminals and microcomputers. It is ideally suited to those who are looking for immediate, low-cost solutions to their computing problems.
Sponsored by the leading publications "Computer Weekly",

DISPLAYED APPOINTMENTS VACANT: $£ 12$ per single col. centimetre ($\mathbf{m i n} .3 \mathrm{~cm}$) LINE advertisements (run on): $£ 2$ per line, minimum three line advertisement, coo Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS.)
PHONE: JAYNE PALMER, 01-661 3500, Ext 8158 . PHONE: JAYNE PALMER, 01 -661 3500, Ext. 8158.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

ELECTRONIC OPPORTUNITIES £5,000-£15,000
 Microprocessors - Minicomputers - Digital -

 Analogue - HF - VHF - UHF - MicrowaveWhere does your skill and interest lie?
Design? Test? Sales? Service? Systems? or perhaps Software?

* Our clients are drawn from all sectors of industry

There are opportunities at all levels from Technician. to Manager

* Most UK locations and some Overseas
* Make your first call count - Contact MIKE GERNAT on 076-384-676/7 (24 hours) ELEGTRamic computer ama mamaceminm appal
$148-150$ High St., Barkway, Royston, Herts $\mathrm{SG8} 8 \mathrm{EG}$.

"Systems International", "Data Processing" and "Practical Computing" in association with the leading Dutch publication "Computable", Compec Europe has now established itself as...

EUROPE'S LEADING SHOWPIECE FOR COMPUTERS, PERIPHERALS AND SOFTWARE

Entrance to the exhibition is by registration on a ticket which is *FREE if obtained in advance or 220 BFr if obtained at the door.

> For your *FREE advance tickets write to:-
> Compec Europe Tickets
> IPC Exhibitions Ltd Surrey House
> 1 Throwley Way Sutton Surrey SM1400

Radio/
 Electronic Technician

London based organisation seeks enthusiastic Radio/Electronic Technician with a broad know-
ledge of Communication Techniques and associated systems. Applicants should preferably be agee between 25 and 40 with desirable qualifications of cations or equivalent in experience Salary according to qualifications and experience but not less than $£ 6,500$. to Position Number CMR 8108, Austin Knight Limited London W1A 1DS Applications are forwarded to the client concerned, therefore companies in which you are not
interested should be listed in a covering letter to the interested should be listed in
Position Number Supervisor.
Austin
AR

- Knight Advertising

*Please note applications received after April 6 cannot be accepted.

INTERNAL SALES ENGINEER

required for R.F. Department
Prime responsibility will be for co-axial cables, waveguides and associated components supplied to both guides and associated comp
manufacturers and end users.
Salary negotiable. Four weeks' annual holiday
Please apply in writing to:
HAYDEN

Mr O. M. Murray, Sales Manager R.F. Department

Hayden Laboratories Ltd.
Chiltern Hill, Chalfont Chiltern Hill, Chalfont St. Peter
Gerrards Cross, Bucks. SL9 9UG

WIRELESS WORLD MARCH 198

Challenging positions at home and abroad

RADIO TECHNICIANS COMMUNICATIONS ENGINEERS

EAE Limited install and maintain communications systems for the oil industry, at home
and abroad.
Due to rapid and continuing expansion in our activities, we constantly require Radio
Technicians, with experience of HF, MF, VHF and UHF, and Engineers (preferably qualifie Technicians, with experience of HF, MF, VHF and UHF, and Engineers (preferably qualifi
to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter.
In the North Sea, earnings are in the range $£ 9,000$ to $£ 12,000$ p.a. Overseas earnings
could be up to $£ 20,000$ - plus tax concessions and generous home leave.
The work is demanding, but rewarding, offering you the chance to use your skills and
your initiative to the full
The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick - bu
where relocation is necessary, we will give generous assistance with removal, legal and emporary accommodation expenses
Please apply, with details of your career to date, to: Personnel Manager, EAE Limited, Dept WW, Offshore House, 284/285 Southtown Road Gt. Yarmouth
Norfolk NR31 OJB Telephone 049358541

EAELimited

Robertson Research Engineering Services Limited
AN
OPPORTUNITY
IN
ELECTRONICS
A vacancy exists in the Electronics Section of the above Internationa Company situated in North Wales design, development and manufacure of a wide range of Research and Geophysical borehole logging equip- ment.
Experience with both digital and ana- logue devices is very desirable
The appointment may be made to Senior Technician for the person with
the appropriate skill and experience.
Minimum academic qualifications are H.N.C. in Electronics or on allied subjects would normally be expected.
For further details, application form
Mrs. Janet Hedges Personnel Administrator INTERNATIONAL LIARITED
Gwymedd LL30 15A. Gwad

have you a background of
BROADCASTING VIDEO ENGINEERING? Bre vou thoroughly thome with
DIGITAL AND MICROPROCESSOR TECHNIQUES?
haveyou sometimes considered the benefist to you and your
family of a rural environment within easy reach of London With first-classs sailing and other sporting opportunities? courd you get involved with a young successful Company
early in its growth? Sreen Electronics have established substantial internationa
sales in advanced character-generators and graphics display sales in advanced character-genera
products and are now looking for a

DESIGN AND

DEVELOPMENT

ENGINEER

with ideas and flair to help them produce the next genera
Please write with an outline of your career, or phone for an
application form if you prefer. Assistance with relocation and a salary appropriate to your experience would be negotiable.

scraen lectronics lto. 19 Anson Road, Martlesh
pswich, Suffolk li 7 PG
Tel. Ipswich 623748 \qquad (931)

TOP JOBS IN ELECTRONICS Posts in Computers, Medical
Commis, elc. ONC to Ph.D. Friee Phone: 01-906 025

COMMUNICATIONS PLANNING

SAUDI ARABIA

The worlds energy frontiers - that's where you will find the worlds largest industrial communication system COMMUNICATIONS ENGINEERS

Make 1981 the yearto develop your careerwith one of the biggest private telecommunication systems in the world Find out more about ARAMCO, write today with full C.V.to

ARAMED AIIPMC

The Professional Approach to your Career
DEPT. EK 0218 ,
5 EAST PARADE, HARROGATE,
NORTH YORKSHIRE HG1 5LF
(93)

UNIVERSITY OF SURREY

Electronics Technician

Our Department of Electronic \& Electrical Engineering seek a
Grade 6 Technician to assist with the design Grade 6 Technician to assist with the design, development,
production and maintenance of a wide range of electronic equipment. Current projects include control and measurement
modules for the UOSAT satellite to be raunched in 1981, un-
derground communication systems, instrumentation for ion immerground communication systems, instrumentation for ion im-
der
pantation plantation research and various applied microprocessor systems. Applicants should have bron.
ience and HNC equivalent qualification.
The University offers good working conditions and environ-
ment, and facilities for a wide range of sports and social activi-
 details or to arrange a visit contact Dennis Pollard (Guildford
71281 ext. 392), or write to the Staff Officer. University of Surrey,
Guildford GU25

CHUBB ELECTRONICS DEVELOPMENT ENGINEERS

ENFIELD

Chubb Electronics is a forward looking company, division is currently developing a rsing. equipment and devices to meet our UK and overseas market requirements. We have vacancies for Electronic Design engial environth proven design experience in
commercial, keen to deal with projects from specification stage through to production. Development Engineers, up to $£ 8500$ p.a.
We are looking for young Electronic Design Engineers to support existing teams working on microprocesso
based systems, and analogue circuit design, covering a variety of interesting tasks of a multi disciplinary nature. Senior Engineer, up to $£ 10,000$ p.a.
We are looking for a Senior Engineer to lead an impor-
tant new project. The successful applicant will be tant new project. The successful applicant will be conver
sant with microprocessor applications sant with microprocessor applications and have a broad
experience of electronic engineering Formal qualifications are required. ties within the company are good. Please send C.V. to:

Appointments

 130

 130} the UK whectrical and electronic engineers. We have clients throuncian to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

JB ELECTROTECHNICA PERSONNEL SERVICES,
2 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 089239388 TJB

Please send me a TJB Appointments Registration form:
Name
Address

Technicians in

 CommunicationsGCHO We are the Government Communication GCHQ We are the Government Communication is $R \& D$ in all types of modern radio communications - HF to satellite - and their security.
THE JOB All aspects of technician support to an
unparalleled range of communications
equipment, much of it at the forefront of current technology.
LOCATION Sites at Cheltenham in the very opportunities for service abroad.

- PAY Competitive rates, reviewed regularly

Receant experience may count towards increased starting pay. Promotion prospects. TRAINING We encourage you to acquire new

- Qualifications You QUALIFICATIONS You should have a TEC acceptable equivalent, plus practical experience. HOW TO APPLY For full details on this and
- information on our special scheme for thos

Robby Robinson, Recruitment Office
Robby Robinson, Recruitment Office
GCHO, Oakley, Priors Road, Cheltenham Glos. GL52 5AJ

- | or ring |
| :---: |
| 0242 |
| ext |

(

TV - AM

CHIEF ENGINEER

TV-AM the breakfast time television contractor are seeking to appoint the Network Chief Engineer who will take part in the development and be responsible for the engineering standards and operation of TV-AM's faciliApplicants must Applicants must be fully experienced in television broad
casting with suitable professinal casting wh sutable professional qualifications
This is a senior position located in London and salary and
benefits are commensurate. Applications will be treated in strict confidence and should be sent to:

> The Chairman TV-AM

3 Deanery Street

UNIVERSITY OF SURREY

Electronics Technician
Salary $\mathbf{£ 6 0 2 0 - £ 7 1 9 1}$
An Electronics Technician Grade 6 is required to run the Department of
Chemistry's electronics Workshoo. Duties include development, construction and application of electronic
equirment for research and teaching purposes. Modification, mainten

 phic, spectrophotometric equipment, etc. Assisting in the development
and
analyticas ructionstems.

Dlectronics R\&D

Join us in the forefront of technology

Take your pick

HF-VHF-UHF

Microwave Optics \& Acoustics A challenging and full career in Government Service.
Minimum qualification - HNC
Starting salary up to $£ 7,999$.
Please apply for an application form to the Recruitment Officer (Dept. WW 3/81) H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK197BH.

Telecommunications

 OfficersUp to $£ 8185$
The posts available are varied, but broadly they fall into thre
groups thre tifferent locations. Hanslope Park (Milton Keynes) Work associated with HF communications equipment, VHF, UHF and microwave links and associated test equipment
teleprinters and other specialised equipment. Ret: $T / 5507$, telepriters and ather special Lised
Hanslope Park and Central Lond
Hanslope Park and Centrat London including a wide variety of
Worksimilar to the bovove, but also in
telephone suscribers' apparatus PMBXs PAX telephone subscribers' apparatus PMBXs, PAXs, PABXs and
ancillary equipment including that using anal ancillary equipment including that using analogue and digital
techniques and voice frequency telegraph. Ref: $T / 5507$. Crowborough, Sussex
Work chiefly on high-power medium and short wave
broadcasting transmitters and associated equipment. Ref: broadcas.
T/5515.
Candidates must have served an apprenticeship or have had
equivalent training. They should normaliy have equivalent training.iney
experience, and hold ONC in Engineering (with pass in Electrica experience, ' A ') or Applied Physics or TEC/SCOTEC certificate
Engineering
or equival or equivalent qualification in a relevant subject. Ex-Service
personnel personner whe have had suitaber trainiog and at least 3 years'
appropriate service (as Staft Sergeant or equivalent) will also be considered
Salary: $£ 5310-£ 7170$; London $£ 1016$ more. Starting salary may Sa above minimum for those with additional relevant
bexperience. Promotion prospects. Non-contributory pension scheme
Relocation assistance may be available to Hanslope Park and London only.
For further information and an application form (to be returned
by 12 March 1981) write by
Link, Basingstoke, Hants RG21 IJB or (0256) 68551 (answering service operates outside office hours).
Please quote a appropriate ref

Foreign and Commonwealth Office

THE COMMISSIONERS OF NORTHERN LIGHTHOUSES
 ASSISTANT RADIO ENGINEER

The post is based in Edinburgh but entails some travelling throughout Scotland and the Isle of Man including offshore and

Applicants, who should be under 35 years of age, must be Chartered Engineers and corporate members of the Institution
of Electrical Engineers, or Institution of Radio and Ilectronic Engineers or have passsed examinations necessary for attaining such membership together with relevant experience.
The Assistant Radio Engineer will assist senior engineers
and be involved in the acceptance, installation and maintenance of equipment including VHFl links, radio beacons, radar beacons
of mote control and monitoring and shipborne navigational aids.
Salary seale from $£ 7000$ per annum rising to $£ 8100$ by 5
annual increments with placing according to qualifications and experience. 4 weeks' 2 days' paid annual leave on commence ment rising to 6 weeks by service related increments, plus 11
days' Bank/public holidays. Sick pay and non-contributory pendays' Bank/public holidays. Sick pay
sion scheme similar to Civi Service.

Assistance with certain removal expenses may be payable.
For application form and further particulars please write to
the Personnel Officer, Northern Lighthouse Board, 84 George the Personnel Officer, Nor
Street, Edinburgh EH2 3DA.

Queen Mary College

 UNIVERSITYOf LONDONDepartmento of Aeronauticat Engineering
Electronics Technician Grade 6
 eauipment and on provision onneat eato ment ior researct and eachint
within the Department. Oualifications $H N C$ or oquivalent with 10 vears

Deparment of Civil Engineering
Workshop/Laboratory Technician Grade 5

Department of Mechanical Engineering

Electronic Engineering Technician

NATIONAL

bROADCASTING SCHOOL

Training for a career in independent locai Radio
Engineering Foundation Course starting May 5th, 1981
This three-month course offers a comprehensive grounding in
radio broadcast engineering and operations. Evening classes and specialist one-week courses also starting

For further details telephone 01-434 2411 or send large s.a.e. to: THE NATIONAL BROADCASTING SCHOOL 14 Greek Street, London W1

TV
TECHNICIAN
Jeddah, Saudi Arabia.
Experi ence ce PALi PA and
SECAM/NTSC TV
video. Single status.
Write giving back-
ground and qualifica-
tions to:
A.A.T.E.
c/o Clarkes Stores
Braunton
Nr. Barnstaple
North Devon

COMPUTER TECHNICIAN-T2 A new post in our Computer Centre for maintenance of terminal
and peripheral equipment of all kinds, clearing faults wherever possible, etc.

Salary: T2 £3990 to £4476 For further details contact
The Polytechnic Wolver ' Werhamptor
The Molineux
Molineux Street, Wolvertampton WV1 1SB
Tel. (0902) 710654-24-hour ansaphone

The Art of Electronics
P. HOROWITZ and W. HILL This is a textreference book that emphasises electronic
circuit design techniques and scientific measurements. It egins at a level suitable for those with no previous exposure evel of design proficiency, emphasising the teashnable used daily by circuit designers. The overall approach is one of simplicity and practicality, and there are numerous sesign examples, with particular emphasis on the choice of circuit
configurations and components.
Hardcovers $£ 35.00$ net Paperback $£ 12.50$ net
CAMBRIDGE UNIVERSITY PRESS

TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLLY
Large quantities of Radio, T.V. and Electronic Compinents.
RESITITRS CARBON \& $\mathbf{C} / \mathbf{F} 1 / 1 / 1 / 4,1 / 2,1 / 3$ Watt from 1 ohm to 10 meg.
RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt.
CAPACITRRS. Silver mica, Polystyrene Ply Metalamite, C280 et mica, Polystyrene, Polyester, Disc Ceramics, Convergence Pots, Slider Pots, Electrolytic condensors, Can Types
Axial, Radial, etc. Transformers, chokes, hopts, tuners, speakers, cables, screened wires,
connecting wires, screws, nuts, transistors, ICs, Diods, connecting wires, screws, nurs, transistors, ICs, Diodes, etc., etc.
All at Knockout prices. Come and pay us avisit. Telephone 4452713 , 4450749 BROADFIELDS \& MAYCO DISPOSALS

T.V.
HANDBOOK
1981

 the ill data bk for design FREQUENCY SYNTHESIIZERS THEORY \& DESKN
byV. Manassewisch
Price: $\mathbf{E 2 0 . 0 0}$
In
 VIDEOTEX: THE NEW T.V.
TELEPHONE
INFORMATION SERVICES
by. Woolite Price
b8.00 BIT-SLICE MICROPROCESSOR
DESSIGN
by Mick
Price: £12.10 byJ. Mick Price: E12.10
TOWERS. INTERNATIONAL
TRANSISTOR SELECTOR
 MODERN MICROPROCESSOR
$\begin{array}{ll}\text { SYSTMDESGN } \\ \text { By D. A. MCGIYGN } & \text { Price E12.85 }\end{array}$

* ALL PRICES INCLUD
POSTAGE
THE MODERN BOOK CO.
19-21 PRAED STRET
Phone $402 \cdot 9176$ Phone 402.9176
Closed Sat. $\mathrm{p} . \mathrm{m}$.

(8974)

\qquad

AUDIO FREQUENGY TRANSFORMERS OF EVEBY TYPE
YOU NAME IT! WE MAKE IT!
Microphone transtormers (all ivgess MCLUDES

 maiching transtormers (all powers). Column Loudspeaker transtormers up wors

 FIRMS. Expor Is a speciality and we have ove
COMMONWEALTH E.EC. USA. MDDELE EAST evc.

SOWTER TRANSFORMERS
A. SOWTER LTD. (EEtrabtishors 1944), Resignore. No. England 30399

Mafcon Trez3.

Mafcon ref radiaton \& power metw

 MUIFHEAD FACSIMILEEAPT. TX 0901 D/S 550 Wearter sateure ix $0900 \mathrm{~S} / \mathrm{A}$ or s/2

INVERTERS High qualty DC.AC. Als. .no
break (2ms) static switch, 19" rack. Auto Charger.

Interport Mains-Store
por 51, London W11 3BZ Tél: 01-727 7042 or 0225310916

THE SCIENTIFIC WIRE COMPANY

 WIRE COMPANY

 Liders List Doalere onuarioses welcome.

S-T-RE-T-C-H

BOX NUMBERS

Box number replies should be addressed to
Box Number
c/o Wireless World
Quadrant House
Sutton, Surrey SM2 5AS

SMALL BATCH PCB'

AGENTS WANTED

The Forge, Stanlen Lito Nr.

WANTED

SPOT CASH

paid for all forms of electronics equi
ment and components.
F.R.G. General Supplies

WANTED April 1 1969 Wireless World
Thenical
Tontroller, Westward

Tomage sp

 , Canl ${ }^{2}$
WANTED!
all types of scrap and
REDUNDANT ELECTRONIC 8 COMPUTER MATERIALS
TRANSISTORS \& PRINTED CIRCUIT BOARDS
TO COMPLETE COMPUTERS THE COMMERCIAL SMELTING 8 REFINING CO. Lid. 171 FARRINGDONROAD
LOND
TEC1 Tel: $10-8314775$
Cables: COMSMELT Works: RECKNEY, Mr. LECEESTETEA

\longrightarrow

FOR CLASSIFIED ADVERTISING

RING

 JAYNE PALMER ON01-661 3500 Ext 8158

136

WIRELESS WORLD MARCH 1981

INDEX TO ADVERTISERS MARCH

Appointments Vacant Advertisements appear on pages 127-135

The biggest name in solder worldwide

Toolbox Reels.
Multicore 5-core solder for general use. Suitable for electrical joints (B.S. 219 GradeG). $40 / 60 \mathrm{tin} /$ lead. 1.6 mm dia. Size 3. $£ 3.91$ per reel. Saubit.
Multicore 5 -core solder for radio, T.V. and similar work. Reduces copper erosion. Suitableforservice engineers and manufacturers using small quantities of solder. 1.2 mm dia. Size 12 . $£ 3.91$ per reel.

MulticoreWick.
Multicore solder-wick for removing solder from virtually any joint.
1.7 mm dia. Size $\mathrm{AB} 10 . £ 1.38$ per reel.

Bib Hi-Fi Accessories Ltd., (Solder Division), Kelsey House, Wood Lane End, Hemel Hempstead, Hertfordshire HP2 4RQ. Telephone: (0442) 61291.

Products that help you make a better iob of it.

Handy Dispensers		Perpack £1.15
PC115	for printed circuits.	
SV130	for radio and T.V. repairs.	£1.61
AR140	for non-electrical applications, except aluminium	£1.38
SS160	for stainless steel'and silver	
	jewellery.	£2.53
19A	for all electronic joints.	
	non-corrosive.	96p
AL150	foraluminium.	£1.93
BCA16	solder cream for stainless steel, jewellery and house-	
	hold products (non-electrical).	£3.22
BCR10	solder cream for electronic	£1.38
BCA14	and electrical use. all purpose solder cream. non-electrical jointing and	£1.38 $£ 1.38$

Soldering Flux Pástes.
Multicore soldering flux paste. Extra fast, non-
corrosive, rosin-flux for electrical and general purpose soldering.
Rosin R.F10. 35 g net. 69 p per pack.
Multicore soldering flux paste for soft metals (except aluminium) and stainless steel. Non-electrical.
Arax A.F14.35g.69p per pack.

Econopak.
Ersin Multicore 5-core solder. Contains non-corrosive flux for electrical applications.
1.2 mm dia. 200 g Econopak. Size 13A. $£ 4.14$ per reel.

Metal Soldering.
Arax Multicore 4-acid-coresolder formetal fabrication (not aluminium) and repairs.
$40 / 60 \mathrm{tin} /$ lead. 1.6 mm dia. Size $11 . £ 3.91$ per reel.

Wire Stripper and cutter.
Wire stripper and cutter with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking-catch and easy-grip plastic covered handles.
Ref: $9 . £ 2.69$ per pair.

All recommended retail prices shown are inclusive of VAT. If you have difficulty in obtaining any of these products send direct with 40p for postage and packing. For free colour brochure send S.A.E.

[^0]: LEVELL eiectrancs ito.

[^1]: MODEL UV141 EPROM ERASER

 - 14 EPROM capacity

 Fast trase time
 Built- 5 -50 minute timer
 Convenient

 - Convenient slide-tray loading of devices

 Rugged construction
 MINS \& ERASE ind

 - MINS \& ERASE indicators

 MODEL UV140 EPROM ERASER
 Similat to Model UV141 but without timer. Price $£ 61.50$ + VAT
 post paid

 ## BULK EPROMS ${ }^{\text {Gtrsiroc }}$

 $\begin{array}{lllll}\begin{array}{llll}\text { (single rail) } \\ 2708 \text { (450ns) }\end{array} & £ 3.90 & £ 3.50 & £ 3.10 & £ 2.90\end{array}$
 Postage and Packing is included in all prices. ADD VAT at 15%.
 All our EPROMS are manufactured by leading companies and are All our EPROMS are manufactured by leading companies and are
 fully guaranteed, branded and to full specification.

 WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEND WRITE OR ELLEPPONE FOR FURTHER DETAILS OR SE
 OFFICIAL COMPANY ORDERS/CHEQUES TO: PLEASE NOTE NEW ADDRESS \& TELEPHONE NUMBER

 ## GP INDUSTRIAL

 ELECTRONICS LTD.
 Unit 6, Burke Road, (otnos ndustrial Estate, Totnos, Devon
 Tolephone: Totnes (0803) 863360 sales, 863380 technical

 DISTRIBUTORS REQUIRED. | Telex: |
 | :---: |
 | 425PORT |

 WW-064 FOR FURTHER DETAILS

[^2]: To be continued

[^3]: \star TO ORDER
 Ludand crossed. Or sendy cheque or money order payable to 1. L.P Electronics in registered envelope; ifC.O.D. payment is wanted, pleaseadd $£ 1.00$ oto TOTAL
 value of order.

[^4]: TO: I.L.P ELECTRONICS LTD. CANTERBURY CT2 7EP
 Please supply
 \qquad

